
Level 1  for  Inspecta-5
Software-Manual

Level 1 -Software Manual
For Inspecta-5 Frame Grabbers

Rev. 0.4.0.5
Copyright  2005 Mikrotron GmbH

-- preliminary --

 

Mikrotron GmbH
Landshuter Str. 20-22 
D-85716 Unterschleissheim
Germany

Tel.: +49 89 726342 00
Fax: +49 89 726342 99

info@mikrotron.de
www.mikrotron.de

mailto:info@mikrotron.de
http://www.mikrotron.de/


General Level 1 -Software Manual

INDEX

 Level 1 -Software Manual..................................................................................................1
1 General                                                                                                                                 .............................................................................................................................  3  

1.1 About Level1                                                                                                                                                                         .....................................................................................................................................................................  4  
1.2 Revision history                                                                                                                                                                     .................................................................................................................................................................  4  
1.3 Trademarks                                                                                                                                                                            ........................................................................................................................................................................  4  

2 Installation                                                                                                                            ........................................................................................................................  5  
2.1 Setup-disk / CD                                                                                                                                                                      ..................................................................................................................................................................  5  
2.2  Installation of Inspecta-5 for Windows 2000/XP                                                                                                                 .............................................................................................................  5  

2.2.1 Setup the Inspecta-5 basic components                                                                                                                         .....................................................................................................................  5  
2.2.2 Installing the Inspecta-5 hardware                                                                                                                                 .............................................................................................................................  6  
2.2.3 Installing the device driver                                                                                                                                             .........................................................................................................................................  6  
2.2.4 A first test                                                                                                                                                                       ...................................................................................................................................................................  8  
2.2.5 The Inspecta-5 frame buffers                                                                                                                                       ...................................................................................................................................  10  
2.2.6 Registry entries                                                                                                                                                            ........................................................................................................................................................  11  

2.3 Multiple Inspectas-5 in one PC                                                                                                                                            ........................................................................................................................................  12  
3 Functions                                                                                                                            ........................................................................................................................  13  

3.1 Overview                                                                                                                                                                              ..........................................................................................................................................................................  13  
3.2 Inspecta-5 operation modes                                                                                                                                                 .............................................................................................................................................  13  
3.3 Camera communication                                                                                                                                                       ...................................................................................................................................................  15  
3.4 Level-1 Compatibility Mode                                                                                                                                               ...........................................................................................................................................  16  

3.4.1 mvfg_open                                                                                                                                                                   ...............................................................................................................................................................  16  
3.4.2 mvfg_setparam                                                                                                                                                             .........................................................................................................................................................  18  
3.4.3 mvfg_getparam                                                                                                                                                            ........................................................................................................................................................  21  
3.4.4  mvfg_getbufptr                                                                                                                                                           .......................................................................................................................................................  23  
3.4.5 mvfg_grab                                                                                                                                                                    ................................................................................................................................................................  24  
3.4.6  mvfg_close                                                                                                                                                                  ..............................................................................................................................................................  26  
3.4.7 mvfg_errmessage                                                                                                                                                         .....................................................................................................................................................  27  

3.5 Level-1 Extended Mode                                                                                                                                                      ..................................................................................................................................................  28  
3.5.1 mvfg_open                                                                                                                                                                   ...............................................................................................................................................................  28  
3.5.2 mvfg_setparam                                                                                                                                                             .........................................................................................................................................................  30  
3.5.3 mvfg_getparam                                                                                                                                                            ........................................................................................................................................................  44  
3.5.4  mvfg_getbufptr                                                                                                                                                           .......................................................................................................................................................  47  
3.5.5 mvfg_grab                                                                                                                                                                    ................................................................................................................................................................  48  
3.5.6 mvfg_close                                                                                                                                                                   ...............................................................................................................................................................  52  
3.5.7 mvfg_errmessage                                                                                                                                                         .....................................................................................................................................................  53  

4 Camera Profile                                                                                                                    ................................................................................................................  54  
4.1 Overview                                                                                                                                                                              ..........................................................................................................................................................................  54  
4.2 Sample of a camera profile                                                                                                                                                  ..............................................................................................................................................  57  

5 Samples                                                                                                                              ..........................................................................................................................  58  
5.1 Opening and closing the driver                                                                                                                                            ........................................................................................................................................  59  
5.2 Setting and reading parameters                                                                                                                                            ........................................................................................................................................  61  
5.3 Getting an image and its measurements                                                                                                                              ..........................................................................................................................  62  
5.4 Record control with trigger logic                                                                                                                                         .....................................................................................................................................  66  
5.5 Record stop by an external signal                                                                                                                                        ....................................................................................................................................  68  

6 Program L1DEMO                                                                                                             .........................................................................................................  69  
6.1 Program options                                                                                                                                                                   ...............................................................................................................................................................  69  
6.2 Pre defined camera profiles in file ‘L1DEMO.CAM’                                                                                                         .....................................................................................................  72  

 

2



General Level 1 -Software Manual

1 General
This manual describes the Level1 Software Interface to the Inspecta-5 High Performance Camera 
Link® Frame Grabber.

Requirements:

• Pentium III or better
• Windows 2000 or Windows XP™ Microsoft
• 256 Mbytes of Main Memory or more

Features of the Inspecta-5:

• Frame grabber for digital matrix cameras with „Full“ Camera Link® interface, 
„Medium“ Camera Link® interface and „Base“ Camera Link® interface.

• Compatible to Camera Link® Specification 1.0 and 1.1.
• Support for line scan cameras.
• Two 26-pin. Connectors with full support of the “Full” Camera Link® specification for video 

data, camera control and –configuration with build in serial interface.
• Video data rate of up to 660 Mbytes/sec. 
• PCIX bus interface for 32 Bit data width and

33 MHz clock frequency.
• One Gigabyte Onboard Memory for fast video streams.
• Four opt coupled input- output ports for external trigger and encoder signals. 
• PCI – X bus interface for 64 Bit data width and

66 MHz clock frequency.
• 528 Mbytes/sec. maximum data rate on the PCI–X Bus.
• SDK for Windows 2000/XP

 

3



General Level 1 -Software Manual

The next revision of the Inspecta-5 FPGA program gives you:
• Parallel grab to internal memory and to PC – memory.
• SDK for HALCON Comprehensive Machine Vision Software.

The Inspecta-5 hardware is controlled by a programmable FPGA. The features of the next 
firmware revision is given to you for free and can be downloaded at our homepage as soon as 
available.

1.1 About Level1

Common to all of our frame grabbers products, is an Application Programming Interface (API) called 
Level1. 

With the Level1 API you will need only a few function calls to initialize the Inspecta, choose a camera 
and get an image. 
Level1-functions are developed to speed up programming the Inspecta and to make it much easier. 

In this manual you get a description of the Level1 API and it’s special implementations for the new 
frame grabber ‘Inspecta-5’. Inspecta-5 is a Full Camera Link® Frame Grabber with On Board 
Memory. The Inspecta-5 is our latest model of a production line of several different frame grabbers. 

The current Level1 API for Inspecta-5, differs in some ways from the Level1 API existing for the frame 
grabber models Inspecta-2 to Inspecta-4. 

On the next pages, we describe the Level1 API for the Inspecta-5. 

To get the latest information on driver and DLL development concerning the Inspecta-5, please visit out 
homepage

http://www.mikrotron.de/

1.2 Revision history

Information presented in this publication has been carefully checked for reliability, however, no 
responsibility is assumed for inaccuracies. The information contained in this document is subject 
to change without notice.

1.3 Trademarks

All brand and product names that appear in this manual may be trademarks or registered 
trademarks of the corresponding companies.
Intel, the Intel Inside logo, Pentium® are trademarks or registered trademarks of Intel Corporation 
in the U.S. and other countries, and are used under license.

 

4

http://www.mikrotron.de/


General Level 1 -Software Manual

2 Installation
2.1 Setup-disk / CD

The Inspecta frame-grabber is delivered with a CD for installing the Inspecta Software.
The CD consists of all device drivers, libraries and other files you need to program the Inspecta-5. 
There is a program on it, you can use to test the frame grabber. The source code for the program is also 
included on the CD.

The newest version of the setup CD can be found at

http://www.mikrotron.de.

2.2  Installation of Inspecta-5 for Windows 2000/XP


Please install all device drivers and driver updats of 

your motherboard (have a look at the driver CD 
delivered with your motherboard) before installing 

the Inspecta-5 hard- or software.
A subsequently installation of the drivers could lead 
to an instable or invalid computer system and could 
require a new installation of your operation system!

Before starting installation…

• Be sure the frame grabber is not installed in your computer.
• Check if there is an option called ‘plug&play operation system installed’ in your BIOS. If this 

option exists, set it to ‘yes’.
• Install the latest service packs of your operation system.

2.2.1 Setup the Inspecta-5 basic components

First you have to install some pasic components of the Inspecta-5:

• Start Windows 200/XP. You should not have installed the Inspecta hardware for now!
• Insert the Inspecta Setup CD, into your CD-ROM drive and close it. After a short time Windows 

should show you the start screen shown below. If the setup does not start by itself, you have 
possibly disabled the Auto Start function of your CD drive. Enable this option and open and 
close the drawer of your CD driver again. You can also start the setup directly by clicking on the 
file INDEX.HTM located on the setup CD.

•

 

5

http://www.mikrotron.de/


General Level 1 -Software Manual

• To start the English installation, click the text‘English’ on the mask. On the next screen select 
‘Win 2000/XP’ from the left column headed by the text ‘Drivers’. This starts the Inspecta-5 
setup.

• If Windows shows a warning, please ignore it.
• Follow the instructions of the Setup program.
• After you have finished the Setup program, shut down your computer and switch it off.
• Please do not remove the Inspecta-5 setup CD from the CD-ROM drive!

2.2.2 Installing the Inspecta-5 hardware

• Be sure that your computer is switched off (better: disconnect it from the power supply system).
• Now install the Inspecta-5 hardware into your computer. Inserting the frame grabber card into a 

free PCI slot of your motherboard does this.
• Restart your computer.

2.2.3 Installing the device driver

• Wait until Windows recognizes new hardware (Video controller for multimedia). Windows 
needs some seconds to find the new hardware, so be patient.

 

6



General Level 1 -Software Manual

• If you have installed the Windows Service Pack 2, the message shown above will eventually be 
displayed. Select ‘No, not this time’ and continue pressing button ‘Next’. 

• When the ‘Found New Hardware Wizard’ appears, select ‘install from a list or specific 
location’ and click ‘Next‘.
On the next dialog select ‘Include this location in the search’ and browse to the drive you put 
the Inspecta-5 CD in. Click ‘Next’ to install the driver.

• A warning message may appear, stating that the hardware has not passed the Windows Logo 
Test. Select ‘Continue Anyway’ to allow the drivers to install.

• Now Windows installs the Inspecta driver. After a few seconds you should get a message from 
Windows, pointing out that the new driver has been installed.

 

7



General Level 1 -Software Manual


The hardware of the Inspecta-5 consists of 1 main and 

7 subcomponents. After installing the driver of the 
main component, Windows start to request drivers 

for the seven subcomponents. Please repeat the 
instructions starting from paragraph 1.1.3 another 7 

times.

• After installing the last driver, the Inspecta-5 installation has finished. Now you can start to use 
the frame grabber.

2.2.4 A first test

Now that you have installed the frame grabber, the device driver and all software components, you can 
do a first test to check if the Inspecta-5 works.

This can be done with the sample program ‘L1DEMO.EXE’ which can be started from 
‘Start->Programs->Inspecta-5->L1Demo’.

 The source code of L1DEMO is also available at the 
installation directory of the Inspecta-5 software.

After L1DEMO has started, select ‘Camera->Live picture’ from the main menu. Now you should see 
the test pattern below. The test pattern is a grey scale image, which pixels values are reaching from 0 to 
255. The test pattern is moving steadily from right to left.

If the program show error messages or the test pattern is not displayed or not correctly shown, please do 
this:

• Check if the setup program finished without errors. If you are not sure, please reinstall it.
• There are all device drivers for the inspecta-5 installed? Use the Windows Device Manager to 

check it.
• There are any problems with the computer or frame grabber hardware? Check if the frame 

grabber is plugged well into the PCI slot 
• Did you set the BIOS option ‘Pluy&Play OS’ to ‘YES’?
• Restart your computer and do the test again.

 

8



General Level 1 -Software Manual

If the Inspecta-5 does not work at all, please send an Email to our support.

If the test runs without any problems, your Inspecta-5 is ready to connect a camera to it.

There are two connectors, each with 26 pins, on the slot bracket of the frame grabber. The upper one of 
the connectors is used for Base Camera Link® cameras. If you want to use Medium or Full Camera 
Link® cameras you have to use both connectors together.

Connect your Camera Link® cable to connect the connector on your camera to the appropriate 
connector on the frame grabber. Please take attention to connect the Base connector on your camera to 
the Base connector on the frame grabber. Check the same for the Medium/Full connector.

Aim the lenses of your camera to a light motive.

Stop displaying the test pattern using ‘Stop’ from the Camera menu (Camera->Stop) and select ‘Load 
profile’ from the same menu (Camera->Load profile). In the shown dialog select a camera profile 
from the list box ‘Profiles’, which fits to your camera. If there is no predefined profile for your camera, 
please contact our support at info@mikrotron.de.

After selecting a profile and pressing the button ‘OK’, the frame grabber gets initialized with the values 
from the camera profile. Now select ‘Camera->Live picture’ again to get a live.

If you can not get a live picture or the shown pictures seems to be corrupted, please check this:
 

• Is the power supply of your camera connected to it?
• Is the aperture of the lenses opened?
• Are all cables connected (maybe you have to exchange the lines for channel 0 and channel 1 on 

the frame grabber)? 
• Check if all device drivers of the Inspecta-5 are installed and running (use ‘Device Manager’)
• Check if the hardware fits well in the PCI slot of your computer
• Try to change the PCI slot for the frame grabber card.

If you continue to have problems, please contact our service by Email at 

info@mikrotron.de.

 

9

mailto:info@mikrotron.de
mailto:info@mikrotron.de


General Level 1 -Software Manual

2.2.5 The Inspecta-5 frame buffers

The Inspecta-5 uses two independence buffers to store camera frames:

• ‘On Board Memory’ placed on the frame grabber board itself
• A part of the main memory of the computer, which is reserved exclusively for the frame grabber 

(image memory).

Frames captured from the camera are saved in the on board memory of the Inspecta-5. Because a user 
application cannot directly access data in this buffer, the Inspecta-5 uses a second buffer, hosted in the 
main memory of the computer. The memory of the buffer is mapped to the address space of your 
application, so you can directly access image data in this area. The API of the Inspecta exports some 
function to copy image data from the on board memory to the main memory.

The dimension of the main memory buffer is defined in the Windows Registry. The default size of the 
buffer is 8 Mbytes.

The Inspecta buffer in main memory can be defined in two ways:

• Definition of image-memory, compatibility mode
 The definition of the image buffer in main memory, takes place at the first installation (or the 
first after a de-installation) in a mode called "compatibility mode" (don’t’ get confused with the 
‘compatibility mode’ of the frame grabber to capture images, see below). An image-memory of 
8 MB from the „NonPagedMemoryPool“ of Windows is reserved for each Inspecta.
This procedure needs no manual operation for changes in system-files. 

Because of the limited size of the ‘NonPagedMemoryPool’ the memory you can get from 
Windows for storing images is restricted to a few megabytes. If you need a larger buffer in main 
memory you should use the ‘MAXMEM’ method described below.

• Definition of image-memory, "maxmem mode"
This mode uses the MAXMEM switch of the Windows BOOT.INI file.
The MAXMEM switch reduces the amount of memory Windows can use, up to the value 
assigned to this parameter. Physical memory above this value is not visible to Windows, so the 
Inspecta frame grabber can use it to store camera frames. 
You have to restart the computer after doing any changes to BOOT.INI. 

Example:
A computer has 128 Mbytes of main memory. We want to use 32 Mbytes of main memory as a 
frame buffer for the Inspecta-5. So we have to restrict the Windows usable memory to 96 
Mbytes. Therefore we set the MAXMEM switch in the BOOT.INI file to 96. This has the effect, 
that the memory above 96 Mbytes is available for the Inspecta frame buffer without conflicts to 
Windows.

Note: BOOT.INI is a Windows system file. To make any changes to it, you must have 
administration rights! The file is also hidden. You can make it visible by setting the attributes of 
the file by typing this command in a Windows Command window:

 

1



General Level 1 -Software Manual

cd \
attrib boot.ini –r –h –s

Now it should be possible to edit the file. Add the MAXMEM switch to the end of the line 
containing the boot information for the Windows operation system.

 Before doing any changes to BOOT.INI, we urgent 
recommend to save a copy of the original file on a save 

place!

Example: Excerpt from a BOOT.INI file from a Windows XP system

[boot loader]

timeout = 30

default=multi (0) disk (0) rdisk (0) partition (1) \WINDOWS

[operating system]
multi (0) disk (0) rdisk (0) partition (1) \WINDOWS
=”Microsoft Windows XP Professional” /fastdetect /noguiboot  /MAXMEM=96

2.2.6 Registry entries

The Inspecta uses the following entry in the Services branch:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MpfgI5Xp

There are three entries you can modify to define the frame grabber buffer in main memory:

Key Sample value Description
BlockSize 0x00800000 length of image memory in Bytes

 (default: 8MB)
MemStartPage 0x02000000 compatibility mode: not used

maxmem mode: Start address of the Inspecta 
frame buffer in main memory (default: 0)

MemoryAllocationMode 1 Selects the mode for frame buffer allocation:
0 = compatibility mode (default)
1 = maxmem mode

Do not change any other value!

 

1



General Level 1 -Software Manual

2.3 Multiple Inspectas-5 in one PC

The current version of the device driver handles just one Inspecta-5 per computer. This will change 
soon, so you can handle up to 4 frame grabbers per computer in the near future.

To select an Inspecta-5 Frame Grabber, all Level1 functions have a ‘DeviceNumber’ (0…3) as a 
parameter in its function body.

Actual only DeviceNumber 0 is valid.

 

1



General Level 1 -Software Manual

3 Functions
3.1 Overview

As mentioned above, the Inspecta-5 uses two kinds of memory to store images from a camera:

• On Board Memory of the Frame Grabber. This memory stores images directly captured from a 
connected camera. User applications cannot access this memory directly.

• An area in the main memory of the computer (frame buffer). This memory is allocated at boot 
time and cannot be changed in size and position at runtime. If you want to change the size of the 
buffer, you have to modify the Registry and reboot Windows. Frames copied from the On Board 
Memory of the Frame Grabber are stored here. This memory can be accessed for reading or/and 
writing by user applications.

Therefore, to get access to captured frames, you need two steps:

1. Save the image captured from camera in the On Board Memory of the Frame Grabber.
2. Copy the complete captured frame from On Board Memory to the Inspecta buffer in main 

memory.

Because capturing image data from the 
camera and copy a frame to main 
memory is done by two independent 
DMA channels, it is possible to run 
these two streams concurrently. But 
take care not to read from the same 
memory where the other stream is 
writing to at the same time.
This concept opens you a wide range of 
possible solutions to realize your 
applications. 

3.2 Inspecta-5 operation modes

The Inspecta-5 can be driven in two modes:

• The Compatibility Mode (ExtFlag=0)
This mode gives certain compatibility to the Level1 API of Inspecta-2 to Inspecta-4.   
If you request a new image, it will be captured to the On Board Memory of the Frame Grabber 

 

1

main memory

On Board Speicher

camera

Frame Grabber

computer

DMA transfer from camera to On Board 
memory.

DMA transfer from On Board 
memory to main memory.



General Level 1 -Software Manual

and then copied to user memory automatically (see chapter 3.2.5, function ‘mvfg_grab’). This 
mode captures images and sends them to main memory by just calling one function.

• The Extended Mode (ExtFlag=1)
This mode separates the capturing of images from the camera to the On Board Memory of the 
Frame Grabber and the transport of image data from On Board Memory to the main memory. 
This gives the software developer much more flexibility on developing his projects.

The Extended Mode is the preferred mode for working with the Inpsecta-5 Frame Grabber.

To switch from one mode to another use function ‘mvfg_setparam’ (see chapter 3.3.3) by 
setting/resetting flag ‘MVFGPAR_EXT_FLAG’.

 Please Note:
You may not mix Compatibility and Extended mode!

 

1



General Level 1 -Software Manual

3.3 Camera communication

The Camera Link® Specification assumes a serial interface to be integrated on the Frame Grabber 
board. This interface is used to send commands to a connected camera. These commands are different 
among different manufacturers.

The Inspecta-5 is compatible to the Camera Link® Specification 1.0 and 1.1.

There are some functions implemented in a separate DLL to send or receive bytes by the serial interface 
of the Frame Grabber. The name of the DLL is ‘CLSERMI5.DLL’ and will be installed on your 
computer together with the device driver of the Inspecta-5 Frame Grabber.

The Camera Link® Specification 1.0 defines these functions for communication:

Function Description
clSerialInit Initializes the serial interface
clSerialRead Reads bytes from the camera
clSerialWrite Writes bytes to the camera
clSerialClose Closes the connection

The Camera Link® Specification 1.1 defines these functions for communication:

Function Description
clSerialInit Initializes the serial interface
clSerialRead Reads bytes from the camera
clSerialWrite Writes bytes to the camera
clSerialClose Closes the connection
clFlushPort Flushes the receive buffer
clGetErrorText Get error text if function fails
clGetNumBytesAvail Returns number of unread bytes in receive buffer
clGetSupportedBaudRates Returns the supported baud rates of the frame grabber.
clSetBaudRate Sets the baud rate of the serial line
clGetNumSerialPorts Returns the number of serial ports on the frame grabber card
clGetManufacturerInfo Returns manufacturer info
clGetSerialPortIdentifier Returns the ID of the selected serial line

See the Camera Link® Specification for a more detailed description.

Before using the CLSERMI5.DLL, make sure to run an Inpsecta-5 application, which uses the function 
‘mvfg_open()’ (e.g. DEMO1.EXE)!

If you want to communicate over the serial line of the frame grabber by your application, you have to 
bind to the ‘ClserMi5.lib’ library of the Inspecta-5. The prototyping for the functions above can be find 
in the header file ‘ClserMi5.h’.

 

1



General Level 1 -Software Manual

3.4 Level-1 Compatibility Mode

3.4.1 mvfg_open

Synopsis:
LONG WINAPI mvfg_open( char * pcCameraProfile,

LONG DeviceNumber )
Description:

Opens, initializes and configures the Inspecta-5 Frame Grabber.

The Inspecta is configured by a set of parameters. All parameters are summarized in a parameter 
block, also called camera profile or camera section.

The function ‘mvfg_open()’ expects the data of a profile written to a text file. We call this file 
‘camera file’ (see camera profile).
There can be multiple profiles in a camera file, each headed by a unique profile name.

A profile may include the name of a file that includes control sequences for the connected camera. 
The content of the file is send to the camera via the Inspecta-5 serial interface.

The file L1DEMO.CAM, which is a part of the L1DEMO, shows some examples of camera profiles. 
The configuration refers to Mikrotron cameras of type MC 131x.

Sample:
See sample Opening and closing the driver

 The current version of the Inspecta 5 device driver 
supports only one frame grabber per computer. So, the 

DeviceNumber has to be set to 0.

Parameters:
char * pcCameraProfile

pcCameraProfile points to a c-string, which contains the filename of the camera file and the name of a specific profile 
name.
(e.g. "Inspecta-4A.cam;TestMode").
Filename and profile name are separated by ";". 
A profile in the camera file is marked by "[camera name]".
All parameters needed to initialize the frame grabber have to be listed in the profile. The parameters are read and set 
automatically by mvfg_open. 

LONG DeviceNumber
Grabber-number (0 to 3)

 

1



General Level 1 -Software Manual

Return value (LONG):
MVFG_OK

Initialization succeed

EMVFG_NO_VXD
Error: Grabber isn't installed

EMVFG_CAMFILE_NOTFOUND
Error: configuration-file doesn't exist.

EMVFG_CAMSECTION_NOTFOUND
Error: Section within the configuration-file doesn't exist.

EMVFG_CAMSTRG_FILE_NOTFOUND
Error: Camera-string-file indicated but not found.

Other
general error

 

1



General Level 1 -Software Manual

3.4.2 mvfg_setparam

Synopsis:
LONG WINAPI mvfg_setparam( char * pcParamName,

char * pcParamValue,
LONG DeviceNumber )

Description:
Specific parameters of the Inspecta can be set by this function during runtime. The values described 
below can also be defined statically by an entry in a camera profile.

The effect of a parameter depends of the selected Inspecta-5 mode. This section describes the use of 
the parameters for the Compatibility Mode. For Extended Mode see chapter 3.3, ‘Level-1 Extended 
Mode’.

Sample:
See sample Setting and reading parameters

Parameters:
char * pcParamName

Name of the parameter that is to be changed.
(Constants to use for pcParamName are listed in the table at the next page.)

char * pcParamValue
Value to set for this parameter
(you can find allowed values at the table at the next page)

LONG DeviceNumber
grabber-number 

Return value (LONG):
MVFG_OK

parameter is set
EMVFG_NO_VXD

Error: grabber isn't installed
EMVFG_CAMPARAM_UNKNOWN

Error: parameter is unknown
EMVFG_CAMPARAM_BADVALUE

Error: value is not possible
EMVFG_NOT_OPEN

Error: driver hasn't been opened with mvfg_open or it was closed

 

1



General Level 1 -Software Manual

pcParamName pcParamValue
MVFGPAR_LINELEN Length of an image-line in bytes (e.g. "640").

On the one hand, the length of an image line has to be a multiple of 32. On 
the other hand, the length of a line is always a multiple of the number of tabs 
the selected pixel router mode uses (see Pixelrouter). 
So the lengths of a line has to be always the least common multiple of the 
used tabs and 32!

Example:

2 tabs mode -> least common multiple of 2 and 32 is 32 -> the length of a 
line has to be a multiple of 32.

10 tabs mode -> least common multiple of 10 and 32 is 160 -> the length of a 
line has to be a multiple of 160.

MVFGPAR_NUMLIN Number of image-lines for record (e.g. "602")

MVFGPAR_REQFRAME Number / position of the frames 
to copy. The frames will be read 
from frame grabber on board 
memory and written to the target 
buffer in the main memory of 
the computer.

"0" ... "n"   =
write one frame
at frame position “n” in the target buffer in 
main memory.
„-2“ ... „-n“   =
write (n – 1) frames.
The frames will be written at offset 0 in 
the target buffer.
"-1" = write as many frames as fit into the 
buffer in main memory.
The frames will be written at offset 0 in 
the target buffer.

MVFGPAR_TIMEOUT Timeout in ms
MVFGPAR_PHOTO, Defines the exposure Time for frame capturing with variable shutter. This 

parameter is only valid for cameras who supports this feature. The time base 
for the photo parameter depends on the current value of parameter 
MVFGPAR_PRESCALER_ACD. E.g. setting it to 8, means a time base of 
about 1 micro second.

MVFGPAR_PHOTOFLAG The photo flag defines whether recording is done asynchronously or in free 
running mode. Asynchronously means that the camera is triggered by an 
external event to make a photo. Free running means, the camera takes 
continuously photos without any external interaction.
If the photo flag is set, a photo can be triggered by the frame grabber itself 
(software trigger) or an external signal on input port 0 of the Inspecta-5 
(hardware trigger). This depends of the setting of parameter 
MVFGPAR_EXTPHOTOFLAG (see below). If a trigger occurs, a signal is 
sent to the camera via the camera control bit CC1 of the Camera Link 
Interface. The length of the signal is defined by the value of 
MVFGPAR_PHOTO (see above). If the camera supports variable shutter, this 
signal can be used as exposure time for the camera.

Parameter Bedeutung
MVFGVAL_NO Don’t use asynchronous mode.
MVFGVAL_YES Activates asynchronous mode.  Call function 

mvfg_grab to initiate a photo and to capture the 
image.

 

1



General Level 1 -Software Manual

pcParamName pcParamValue
MVFGPAR_EXTPHOTOFLAG If photo flag is set, (see MVFGPAR_PHOTOFLAG, above), this flag defines 

if a photo is initiated by the frame grabber itself (software trigger) or by an 
external signal on the digital input port 0 (hardware trigger) of the Inspecta-5. 
Recording is started if the signal on port 0 gets active high.

Parameter Bedeutung
MVFGVAL_NO Software trigger is active. Call function mvfg_grab 

to start recording by the camera and to grab the 
image.

MVFGVAL_YES Hardware trigger is active. Recording is started by an 
external signal on input bit 0 of the frame grabber. 
The camera itself is triggered by an signal on camera 
control bit 1 (CC1) of the Camera Link interface. 
Start grabbing by calling function mvfg_grab before 
the external signal gets active.

MVFGPAR_TRIGGERMODE This parameter is only valid for line scan cameras. It defines the way, camera 
lines are sampled by the frame grabber. If you want to use it, 
MVFGPAR_EXTPHOTOFLAG has to be set to hardware trigger active.
 
Parameter Bedeutung
MVFGVAL_TRIGGERMODE
_EDGE

An pulse on input port 0 of the frame 
grabber starts the camera to take a photo. 
This is done by the Inspecta-5, setting the 
camera control bit 1 (CC1) to level high. 
Then the frame grabber starts sampling as 
much lines coming from the camera, as 
defined by the parameter 
MVFGPAR_NUMLIN. 

MVFGVAL_TRIGGERMODE
_CONTINUOUS

An signal on input port 0 of the frame 
grabber starts the camera to take a photo.
As long as the signal stays active (level 
high), lines are sampled from the camera. If 
the signal goes inactive, recording stops. So 
the vertical size of the grabbed frame 
depends of the length of the signal (variable 
frame size). The size of the buffer used to 
store the lines is defined by parameter 
MVFGPAR_NUMLIN. This buffer is treated 
as a ring buffer., i.e. if more than 
MVFGPAR_NUMLIN lines are sampled, the 
frame grabber starts again to write them 
from the beginning of the buffer. The 
number of lines sampled, can by read by 
using parameter MVFGPAR_CAPFRAME.

 

2



General Level 1 -Software Manual

3.4.3 mvfg_getparam

Synopsis:
LONG WINAPI mvfg_getparam( char * pcParamName,

void * pValueBuffer,
LONG DeviceNumber )

Description:
The function returns the current or value of the Inspecta-5 parameters listet below.

 The meaning of the parameters is the same as on function ‘mvfg_setparam()’ respectively is 
described below.

Sample:
See sample Setting and reading parameters

Parameters:
char * pcParamName

Name of the parameter to be read.
(Constants to use for pcParamName are listed in the table at the next page.)

void * pVauleBuffer
Address of a buffer to which the value of the parameter is written.
The buffer must be from the same type as the parameter, so that the returned value fits into it. 
(You can find the specific types at the table at the next page.)

LONG DeviceNumber
Grabber-number 

Return value (LONG):
MVFG_OK

the parameter was read
EMVFG_NO_VXD

Error: grabber isn't installed
EMVFG_CAMPARAM_UNKNOWN

Error: parameter is unknown
EMVFG_NOT_OPEN

Error: driver hasn't been opened with mvfg_open or it was closed

 The buffer pValueBuffer must be the right type. 
Within the table for the parameters you will find the 
types at the left side (vertical).

 

2



General Level 1 -Software Manual

Type pcParamName Description
LO

N
G MVFGPAR_REQFRAME Number / position of frames to capture from camera.

MVFGPAR_TIMEOUT Timeout in ms

D
W

O
R

D MVFGPAR_LINELEN Length of a image-line for record in bytes

MVFGPAR_NUMLIN Number of image-lines for record

FO
R

M
A

T_
IN

FO

MVFGPAR_DATAFORMAT Structure with information about the format of the image in the frame 
grabber memory (current only 8 Bit Black&White format is supported):

iNumberOfPlanes Number of planes which are read by the grabber.
iChannelsPerPlane Number of channels per plane. (Represents e.g. the color-

channels at RGB 8:8:8   =   3 channels).
iBitsPerChannel [ ] Array with the number of bits of each channel.

(e.g. at RGB 5:6:5   =   { 5, 6, 5 },
        at 8 bit B&W   = { 8 } )

iOffsetNIOC Offset to the next pixel in one channel in bytes.
(e.g. at RGB 5:6:5 (16 bit)     =   2
        at RGB 8:8:8 (24 bit)     =   3
        at B&W 8 bit                 =   1
        at B&W 10 bit               =   2 )

lImageWidth Width of an camera image in pixel.
lImageHeight Height of an image in pixel.
lLineSize Length of one line in bytes (dependes on the width and the 

format of an image).
(e.g. Width = 640 Pixel, Format = RGB 8:8:8
        lLineSize = 640 * 3 = 1920 bytes)

lPlaneSize The size of one planes in bytes.
lFrameSize The size of one frame (all planes) in bytes.
lColorFormat MVFG_RGB = color,  MVFG_GRAY = gray-scale

 

2



General Level 1 -Software Manual

3.4.4  mvfg_getbufptr

Synopsis:
void * WINAPI mvfg_getbufptr( LONG DeviceNumber )

Description:
Returns a pointer to the image buffer in the computers main memory. Frames read from the on board 
memory of the frame grabber are written to this buffer. 

The pointer returned is always a pointer to the start of the frame buffer in main memory. If you 
request frames with the parameter ‘MVFGPAR_REQUFRAME’ (see chapter 3.2.2) with a value N, N > 
0, you have to add N * frame size to this address to get a pointer to the image.

Sample:
See sample Getting an image and its measurements

Parameters:
LONG DeviceNumber

Grabber-number (0 to 3)

Return value (void *):
Returns a pointer to the start of the image buffer in main memory. If the operation fails, the function 
returns a NULL pointer.

 The function mvfg_errmessage cannot be used here 
because the return value is a pointer to a buffer

 

2



General Level 1 -Software Manual

3.4.5 mvfg_grab

Synopsis:
LONG WINAPI mvfg_grab( DWORD iCommand,

LONG DeviceNumber )
Description:

This function controls the request of frames from the camera and the transfer of captured image data 
from the On Board Memory of the Frame Grabber to main memory.

In Compatibility Mode, these two actions are encapsulated in one function. In Extended Mode you 
have to do this in two successive function calls  (see chapter 3.2.5).

Sample:
See sample Getting an image and its measurements

Parameters:
DWORD iCommand

Behaviour (Constants for iCommand are listed at the table at the next page).
LONG DeviceNumber

Grabber-number 

Return value (LONG):
Depends on the value of iCommand (listed at the table at the next page)

iCommand Description
GRAB_WAIT

D
es

cr
ip

tio
n Requests one or more frames from the camera, then copy the frames from 

grabber memory to main memory and returns to caller.
 

R
et

ur
n-

va
lu

e MVFG_GRAB_READY Grab succeed

EMVFG_TIMEOUT Error: image couldn't be grabbed within timeout

EMVFG_NO_VXD Error: Inspecta isn't installed

EMVFG_NOT_OPEN Error: driver hasn't been opened by mvfg_open or it 
was closed

 

2



General Level 1 -Software Manual

iCommand Description
GRAB_NOWAIT

D
es

cr
ip

tio
n Requests one or more frames from the camera and returns at once to the caller.

R
et

ur
n-

va
lu

e MVFG_OK Grab started

EMVFG_NO_VXD Error: Inspecta isn't installed

EMVFG_NOT_OPEN Error: driver hasn't been opened by mvfg_open or it 
was closed

GET_STATUS

D
es

cr
ip

tio
n Get the status of the last grab request. If status ‘MVFG_GRAB_READY’ is 

returned, the captured frames are copied to main memory.

R
et

ur
n-

va
lu

e

MVFG_GRAB_READY Grab succeed

MVFG_NOT_READY Grab started but not complete yet
EMVFG_TIMEOUT Error: image couldn't be grabbed within timeout

EMVFG_NO_VXD Error: Inspecta isn't installed
EMVFG_NOT_OPEN Error: driver hasn't been opened by mvfg_open or it 

was closed
GET_STATUS_WAIT

D
es

cr
ip

tio
n Waits for the end of a previously started grab request. If the function returns, 

the requested frames are captured from the camera and stored in the main 
memory.

R
et

ur
n-

va
lu

e MVFG_GRAB_READY Grab succeed

EMVFG_TIMEOUT Error: image couldn't be grabbed within timeout

EMVFG_NO_VXD Error: Inspecta isn't installed

EMVFG_NOT_OPEN Error: driver hasn't been opened by mvfg_open or it 
was closed

 

2



General Level 1 -Software Manual

3.4.6  mvfg_close

Synopsis:
LONG WINAPI mvfg_close( LONG DeviceNumber )

Description:
This function stops and deactivates the driver.

Sample
See sample Opening and closing the driver

Parameters:
LONG DeviceNumber

Grabber-number 

Return value (LONG)
MVFG_OK

Driver deactivated
EMVFG_NO_VXD

Error: grabber isn't installed

 

2



General Level 1 -Software Manual

3.4.7 mvfg_errmessage

Synopsis:
LONG WINAPI mvfg_errmessage( LONG iCode )

Description:
This function handles a return-value on another MVFG-function (which can return error-codes) and 
shows a Windows-message-box with the error. If iCode was MVFG_OK, nothing happens.
iCode is returned unchanged.

Sample:
See sample Opening and closing the driver

Parameters:
LONG iCode

Return-value of an MVFG-function (error- or function-code). 
iCode cannot be obtained from mvfg_getbufptr because mvfg_getbufptr returns no error-codes but a pointer.
All other level1-functions return a function- or error-code.

Return value (LONG):
The parameter iCode is returned unchanged.

 

2



General Level 1 -Software Manual

3.5 Level-1 Extended Mode

3.5.1 mvfg_open

Synopsis:
LONG WINAPI mvfg_open( char * pcCameraProfile,

LONG DeviceNumber )
Description:

The Inspecta is configured by a set of parameters. All parameters are summarized in a parameter 
block, also called camera profile or camera section.

The function ‘mvfg_open()’ expects the data of a profile written to a text file. We call this file 
‘camera file’ (see camera profile).
There can be multiple profiles in a camera file, each headed by a unique profile name.

A profile may include the name of a file that includes control sequences for the connected camera. 
The content of the file is send to the camera via the Inspecta-5 serial interface. 

The file L1DEMO.CAM, which is a part of the L1DEMO, shows you some examples of camera 
profiles. It also shows for the Mikrotron cameras of type MC 131x, how to add a camera 
configuration file.
.

Sample:
See sample Opening and closing the driver

 This version of the Inspecta 5 device driver supports 
only one frame grabber per computer. So, the 

DeviceNumber have to be set to 0.

Parameters:
char * pcCameraProfile

pcCameraProfile points to a c-string, which contains the filename of the camera file and the name of a specific profile 
name.
(e.g. "Inspecta-4A.cam;TestMode").
Filename and profile name are separated by ";". 
A profile in the camera file is marked by "[camera name]".
All parameters needed to initialize the frame grabber have to be listed in the profile. The parameters are read and set 
automatically by mvfg_open. 

LONG DeviceNumber
Grabber-number (0 to 3)

Return value (LONG):
MVFG_OK

Initialization succeed

 

2



General Level 1 -Software Manual

EMVFG_NO_VXD
Error: Grabber isn't installed

EMVFG_CAMFILE_NOTFOUND
Error: configuration-file doesn't exist.

EMVFG_CAMSECTION_NOTFOUND
Error: Section within the configuration-file doesn't exist.

EMVFG_CAMSTRG_FILE_NOTFOUND
Error: Camera-string-file indicated but not found.

Other
General error

 

2



General Level 1 -Software Manual

3.5.2 mvfg_setparam

Synopsis:
LONG WINAPI mvfg_setparam( char * pcParamName,

char * pcParamValue,
LONG DeviceNumber )

Description:

Specific parameters of the Inspecta can be set by this function during runtime. The values described 
below can also be defined statically by an entry in a camera profile. The call of this function 
overwrites values set by function ‘mvfg_open’.

The effect of a parameter depends of the selected Inspecta-5 mode. This section describes the use of 
the parameters for the Extended Mode. For Compatibility Mode see Level-1 Compatibility Mode.

Sample:
See sample Setting and reading parameters


All addresses in the descriptions below have the 

meaning of ‘byte offsets’. The offsets references a 
position in the image buffers, counted from the start 

of a buffer.

Parameters:
char * pcParamName

Name of the parameter that is to be changed.
(Constants to use for pcParamName are listed in the table at the next page.)

char * pcParamValue
Value to set for this parameter
(you can find allowed values at the table at the next page)

LONG DeviceNumber
grabber-number 

Return value (LONG):
MVFG_OK

Parameter is set
EMVFG_NO_VXD

Error: grabber isn't installed
EMVFG_CAMPARAM_UNKNOWN

Error: parameter is unknown
EMVFG_CAMPARAM_BADVALUE

Error: value is not possible
EMVFG_NOT_OPEN

Error: driver hasn't been opened with mvfg_open or it was closed

 

3



General Level 1 -Software Manual

Miscellaneous parameters

pcParamName pcParamValue
MVFGPAR_EXT_MODE_FLAG Set/reset the extended mode flag.

Flag = “0”: Compatibility mode on
Flag = “1”: Extended mode on

MVFGPAR_TIMEOUT Timeout in ms
MVFGPAR_FRAME_CNTR Activates the In-Frame-Counter of the Inspecta-5. The frame counter counts 

continuously captured camera frames. The current frame number is written to 
the first byte respectively to the first two bytes of a captured frame. If the 
Camera Link interface is configured 

MVFGPAR_OUTPUT_PORT Sets the digital output ports 0 …3 to logic 0 or 1, in dependency of the values in 
the parameter.

Parameter Bit 0 = value for port 0
Parameter Bit 1 = value for port 1
Parameter Bit 2 = value for port 2
Parameter Bit 3 = value for port 3

The current state of the output ports can be read by function ‚mvfg_getparam’.

How to get access to image data - overview

As described in chapter 3.1, ‘Overview’, frame acquisition from the camera and the transport to user 
memory is done by two independent components on the Frame Grabber. Frames captured from a 
camera are stored in the On Board memory of the Frame Grabber. For the user to get access to the 
image data, the frames have to be copied to a buffer in main memory.
The number of frames and the size of the frames have to be defined before grabbing frames from the 
camera or to copy them to main memory. The sections below describe the parameters needed to define 
transactions from the camera and to the main memory.

Copying frames from the On Board memory to main memory

Before copying data from the On 
Board memory of the Frame 
Grabber to the buffer in main 
memory, you have to define the 
address you want to read data from 
and the destination address you 
want to copy the data to. Additional 
you have to define the amount of 
data you want to transfer (see 
picture on the left). The number of 
frames to copy is defined by the 
parameter MVFGPAR_REQFRAME, the 
size of a frame by the parameters 
MVFGPAR_LINELEN and 

MVFGPAR_NUMLIN.

 

3

Length of a camera line 
in bytes:

MVFGPAR_LINELEN

Number of lines to copy
MVFGPAR_NUMLIN

Picture in main memory Picture in On 
Board memory

Start address for reading 
in the On Board memoy
MVFGPAR_READ_ADD

Destination address in main 
memory

MVFGPAR_WRITE_ADD



General Level 1 -Software Manual

Please note, that the length of a line is defined in bytes per line. E.g. the line length of a RGB camera 
with 640 pixel/line and 24 bits/pixel, would be defined as 

Line length = 640 pixels * 3 byte per pixel = 1920

So the formula for calculating the line length is:

Line Length = Pixel Per Line * Bytes Per Pixel

MVFGPAR_READ_ADDR is the address in the On Board memory from where we want to read data. The 
address is relative to the start of the buffer. MVFGPAR_WRITE_ADDR is the destination address of the 
grabber buffer in main memory. These addresses also starts with address 0 for the first byte in the 
buffer. Please note the parameter MVFG_REQFRAME (see below) that also influences the destination 
address of the data.

pcParamName pcParamValue
MVFGPAR_LINELEN Length of an image-line to copy to main memory in bytes (e.g. "1920").

MVFGPAR_NUMLIN Number of image-lines to copy to main memory (e.g. "480")

MVFGPAR_REQFRAME Number / position of the 
frames to copy. The 
frames will be read from 
frame grabber on board 
memory and written to 
the target buffer in the 
main memory of the 
computer.

"0" ... "n"   =
write one frame
at position “n” in the target buffer in main memory.
„-2“ ... „-n“   =
write (n – 1) frames.
The frames will be written at offset 
MVFGPAR_WRITE_ADDR in the target buffer.
"-1" = write as many frames as fit into main memory 
buffer, starting at offset MVFGPAR_WRITE_ADDR.

MVFGPAR_READ_ADDR Source address (offset) in frame grabber memory to read image data from.

MVFGPAR_WRITE_ADDR Data read from grabber memory will be written to this offset in the target buffer in 
main memory.

 

3



General Level 1 -Software Manual

Defining frames to get from the camera

The Frame Grabbers stores data read from the camera in its On Board memory. The transfer is defined 
by a number of parameters which similar to the parameters described above for the transfer of frames to 
main memory.
The Inspecta-5 has the ability to treat a part or the whole On Board memory as a ring buffer. Setting the 
parameter MVFGPAR_G_CONT_FLAG to 1 causes the Frame Grabber to write sampled frames 
continuously to its memory. If it reaches the end of the defined buffer, it continues writing at the starts 
of the buffer, and so on.  To stop recording, you have to call function ‘mvfg_grab()’ (see mvfg_grab) 
with the argument ‘GRAB_G_STOP’. This will stop recording by the end of the current frame. If you 
want to get a number of frames even after you stopped recording, you can define a trailer count. 
Recording will not stop until the number of frames defined in parameter MVFGPAR_G_TRAILER is 
captured from the camera.

pcParamName pcParamValue
MVFGPAR_G_LINELEN Line length of a frame from the connected camera in bytes.

On the one hand, the length of an image line has to be a multiple of 32. On the 
other hand, the length of a line is always a multiple of the number of tabs the 
selected pixel router mode uses (see Pixelrouter). 
So the lengths of a line has to be always the least common multiple of the 
used tabs and 32!

Example:

2 tabs mode -> least common multiple of 2 and 32 is 32 -> the length of a line has 
to be a multiple of 32.

10 tabs mode -> least common multiple of 10 and 32 is 160 -> the length of a line 
has to be a multiple of 160.

MVFGPAR_G_NUMLIN Number of lines of a frame from the connected camera.

MVFGPAR_G_REQFRAME Number/count of requested frames from the camera. These frames will be written 
to the frame grabber on board memory (cf. parameter MVFGPAR_REQFRAME, 
above).

MVFGPAR_G_READ_ADDR Reserved

MVFGPAR_G_WRITE_ADDR Offset in the on board memory of the frame grabber, image data from the camera 
will be written to.

MVFGPAR_G_TRAILER Trailer count.
Number of frames read from the connected camera after stop signal.
The trailer count have to be > 0.

MVFGPAR_G_CONT_FLAG Continuous flag.
“0” = Frame grabber stops after the number of MVFGPAR_G_REQFRAME’s 
frames are recorded.
“1” = The frame grabber writes frames from the camera in a circular way to the on 
board memory. If the defined buffer is full, the frame grabber starts again at the 
top of the buffer to write images (ring buffer).  The continuous recording of 
frames can be stopped sending the command ‘GRAB_G_STOP’ (cf. function 
‘mvfg_grab()) to the frame grabber. After the stop signal is set, a number of 
MVFGPAR_G_TRAILER frames will be written before the frame grabber stops 
finally.

 

3



General Level 1 -Software Manual

pcParamName pcParamValue
MVFGPAR_G_WRAP_FLAG Wrap around flag. 

If the continuous flag is set, the frame grabber handles the on board memory as a 
ring buffer.  If the frame grabber has written the whole buffer and starts again at 
the top of the buffer, this flag is set to “1” to signal it to the user. Writing any 
value to it resets the flag.

 

3



General Level 1 -Software Manual

Inspecta-5 trigger logic

The Inspecta-5 contains hardware logic to generate control signals for the lines CC1 to CC4 of the 
Camera Link® Interface. 

The main part of the logic consists of four programmable timers (Timer A-D), which can be gated to 
each other and the digital input ports of the frame grabber.

Each timer needs a clock and a start signal as input signal. The output of a timer is a pulse of an 
adjustable duration.

The output of the timers or the lines of the digital input ports can be connected to the camera control 
lines CC1 to CC4 of the Camera Link® interface. This gives you the opportunity to control a connected 
camera by these signals.

G
A timer, which is not started by an external signal 
(e.g. by the end of timer B), has to be toggled after 
its counter is loaded, to start working. This is done 
by setting the trigger source to ‘Software Trigger’ 
and then set it to the chosen source (e.g. ‘Timber B 

End’).

An additional feature of the Inspecta trigger logic is the possibility to use an external signal to start or 
stop grabbing of the frame grabber (e.g. by a signal on one of the digital input ports).

 

3



General Level 1 -Software Manual

The configuration of the trigger logic is done by a number of registers in the frame grabber, which can 
be set by these parameters:

pcParamName PcParamValue
MVFGPAR_TIMER_A_START
MVFGPAR_TIMER_B_START

Defines the start event for timer A and B. Possible events:

Parameter Meaning
MVFGVAL_SW_TRIGGER A software generated trigger signal.
MVFGVAL_PPIN0
MVFGVAL_PPIN1
MVFGVAL_PPIN2
MVFGVAL_PPIN3

A signal on one oft the digital input ports 0...3 of the 
frame grabber.

MVFGVAL_QUADDEC Output of the quadrature decoders of the frame grabber.
MVFGVAL_TIMER_A_END 
MVFGVAL_TIMER_B_END

End of timer A or timer B.

MVFGPAR_TIMER_C_START Defines the start event for timer C.
Possible events:
Parameter Meaning
MVFGVAL_TIMER_A_
RISING 

Rising edge of the output signal of Timer A.

MVFGVAL_TIMER_B_
RISING 

Rising edge of the output signal of Timer B.

Timer C and D are mainly used as a slope detector for the falling or raising 
edge of the output signal of timer A and B.MVFGPAR_TIMER_D_START Defines the start event for timer D.
Possible events:
Parameter Meaning
MVFGVAL_TIMER_A_
FALLING

Falling edge of the output signal of Timer A.

MVFGVAL_TIMER_B_
FALLING

Falling edge of the output signal of Timer B.

MVFGPAR_TIMER_A_COUNT 32 bit counter for timer A. The counter is decremented by the clock of the 
timer. The output signal of the timer remains active until the counters gets 0. 
(Pulse duration). 
The clock of the timers is calculated by
     Timebase/Prescaler.
 (see parameter 
MVFGPAR_TIMER_ACD_CLOCK and MVFGPAR_PRESCALER_ACD )
.

MVFGPAR_TIMER_B_COUNT Function as timer A, but with a fixed clock of 7,3728 MHz.
MVFGPAR_TIMER_CD_COUNT Counter for timer C and D. Function as timer A. 
MVFGPAR_TIMER_ACD_CLOCK Defines the source for the clock of timer A, C and D.

Possible values:

MVFGVAL_PRESCALER_
OUT 

Output of the internal clock generator divided by the 
current value of the ‚Prescaler’. The clock generator has a 
frequency of 7,3728 Mhz (see 
MVFGPAR_PRESCALER_ACD).

MVFGVAL_LVAL_EDGE Rising/falling edge of the Line Data Valid signal of the 
connected camera.

The clock of timer B is fixed to 7,3728 MHz!

 

3



General Level 1 -Software Manual

pcParamName PcParamValue
MVFGPAR_TRIGGER_SYNC_A
MVFGPAR_TRIGGER_SYNC_B

Synchronizes the output signal of timer A or B to the Line Data Valid signal 
of the camera.
Parameter Bedeutung
MVFGVAL_NO Don’t synchronize.
MVFGVAL_YES Synchronize to LDV.

MVFGPAR_LVAL_EDGE_A
MVFGPAR_LVAL_EDGE_B

Defines the edge of the Line Data Valid Signals to which timer A 
respectively. timer B is synchronized.
Parameter Bedeutung
MVFGVAL_RISING Rising edge.
MVFGVAL_FALLING Falling edge.

MVFGPAR_PRESCALER_ACD Divider for timer clock. The base clock of 7,3728 MHz is divided by this 
value and then used as clock for timer A, C and D. Range: 1-255

MVFGPAR_CC1_SOURCE
MVFGPAR_CC2_SOURCE
MVFGPAR_CC3_SOURCE
MVFGPAR_CC4_SOURCE

Defines the signal, which is connected to Camera Control Signal CC1, CC2, 
CC3 or CC4 of the Camera Link® interface.
Defined signals:
Parameter Bedeutung
MVFGVAL_CC_NOP The Camera Control Signal is fixed to logically 0.
MVFGVAL_PPIN0 
MVFGVAL_PPIN1 
MVFGVAL_PPIN2
MVFGVAL_PPIN3

The lines of the digital input port 0, 1, 2 or 3 are connected 
directly to one of the CCx lines

MVFGVAL_TIMER_A 
MVFGVAL_TIMER_C 
MVFGVAL_TIMER_D

The output signal of timer A, C or D is connected to one 
of the CCx lines.

MVFGPAR_CC1_POLARITY 
MVFGPAR_CC2_POLARITY 
MVFGPAR_CC3_POLARITY 
MVFGPAR_CC4_POLARITY

Set the polarity oft the output signal of Camera Control Line CC1...CC4.
Possible values:
Parameter Meaning
MVFGVAL_POS Active level is positive.
MVFGVAL_NEG Active level is negative.

MVFGPAR_QUADDEC_DIV Defines the divider for the output signal of the quad decoders. The decoder 
uses the signals on input port 1 and 2 to build the output signal.
Range: 1-255.

MVFGPAR_EX_GRAB_START Used to start a previously initiated recording by an external signal.
 Possible values:
Parameter Meaning
MVFGVAL_CC_NOP Deactivated.
MVFGVAL_SW_TRIGGER Software Trigger
MVFGVAL_PPIN0 
MVFGVAL_PPIN1 
MVFGVAL_PPIN2
MVFGVAL_PPIN3

Pulse on digital input port 0,1,2 or 3.

MVFGVAL_TIMER_A 
MVFGVAL_TIMER_B

Outgoing pulse from timer A or B.

 

3



General Level 1 -Software Manual

pcParamName PcParamValue
MVFGPAR_EX_GRAB_STOP Stops a running recording of frames by an external signal.

Possible values:
Parameter Meaning
MVFGVAL_CC_NOP Deactivated.
MVFGVAL_SW_TRIGGER Software Trigger
MVFGVAL_PPIN0 
MVFGVAL_PPIN1 
MVFGVAL_PPIN2
MVFGVAL_PPIN3

Pulse on digital input port 0,1,2 or 3.

MVFGVAL_TIMER_A 
MVFGVAL_TIMER_B

Outgoing pulse from timer A or B.

MVFGPAR_EX_GRAB_START_
POL
MVFGPAR_EX_GRAB_STOP_
POL

Defines the edge of the external signal, recording is started or stopped.
Parameter Meaning
MVFGVAL_RISING Action on rising edge.

MVFGVAL_FALLING Action on falling edge.

MVFGPAR_PPIN_INVERSION Invert the input signals of the digital input ports of the frame grabber:
Parameter Meaning
MVFGVAL_YES Yes
MVFGVAL_NO No.

MVFGPAR_SW_TRIGGER By setting this value to low and high, you can generate a software trigger 
pulse. This trigger pulse can be used to start timer A or B. Or you can use it 
as signal for the external start/stop logic (use it to test your trigger logic!).
Parameter Meaning
MVFGVAL_LOW Set the signal to logic high.
MVFGVAL_HIGH Set the signal to logic low

Examples:
- Record control with trigger logic     
-  Record stop by an external signal     

 

3

file:///Sirius/vol2/ARCHIV/DOKU/MANUAL/INSPECTA/Inspecta-5/#_Aufnahmestop_durch_externes


General Level 1 -Software Manual

The Inspecta-5 Pixel router

To connect Camera Link® cameras using different numbers of parallel transferred pixels and bits/pixel 
to the frame grabber, the Inspecta-5 is equipped with a ‘Pixel Router’. Depending on the configuration 
of the router, cameras with 1 to 10 taps and 8 to 14 bits (color or b/w) can be connected to the frame 
grabber.

 The configuration of the router is done by ‚Magic Numbers’. Each number stays for a specific 
configuration of the Camera Link® interface. A numbers is set by the function ‘mvfg_setparam()’ using 
the command ‘MVFGPAR_PIXEL_ROUTER. 

pcParamName PcParamValue
MVFGPAR_PIXEL_ROUTER MagicNumber.

Defines the configuration of the Camera Link® interface.  
E.g. mvfg_setparam(MVFGPAR_PIXEL_ROUTER, “14”, ID);

The table below shows the possible configurations of the Camera Link® interface up to now:

0x00 8 Taps, 8 Bit/Pixel,
Ports ABCDEFGH
Full Camera Link®

1 Byte / Pixel, 8 Bit / Pixel,
Format: 0:7  0:7  0:7  0:7  0:70:7...
Port A
Port B
Port C
Port D
Port E
Port F
Port G
Port H
Port I
Port J

Pixelrouter-Mode: 0x00
8 Taps, 8 Bit/Pixel ->

8 Bit/Pixel, monochrom

0x01 10 Taps, 8 Bit/Pixel,
Ports ABCDEFGHI + 
Steuerleitungen (J),
Full Camera Link®.

1 Byte / Pixel, 8 Bit / Pixel,
Format: 0:7  0:7  0:7  0:7  0:7...
Port A
Port B
PortC
Port D
Port E
Port F
Port G
Port H
Port I
Port J

Pixelrouter-Mode: 0x01
10 Taps, 8 Bit/Pixel ->

8 Bit/Pixel, monochrom

0x14 2 Taps, 8 Bit/Pixel,
Ports AB
Base Camera Link®

1 Byte / Pixel, 8 Bit / Pixel,
Format: 0:7  0:7  0:7  0:7  0:7...
Port A
Port B
Port C
Port D
Port E
Port F
Port G
Port H
Port I
Port J

Pixelrouter-Mode: 0x14
2Taps, 8 Bit/Pixel ->

8 Bit/Pixel, monochrom

 

3



General Level 1 -Software Manual

0x15 2 Taps, 10 Bit/Pixel,
Ports ABC
Base Camera Link®

2 Byte / Pixel, 10 Bit / Pixel,
Format: 
0:7  8:9  0:7  8:9  0:7  8:9  0:7...
Port A
Port B
Port C
Port D
Port E
Port F
Port G
Port H
Port I
Port J

Pixelrouter-Mode: 0x15
2Taps, 10 Bit/Pixel ->

16 Bit/Pixel, monochrom

0x16 3 Taps, 8 Pixel/Bit,
Ports ABC
Base Camera Link®

4 Bytes / Pixel, 8 Bit / color, 24 Bit color depth.
 The data is arranged as 32 Bit/Pixel Bitmap, The colors are in the order 
BGR stored in memory. The three color bytes are extended by a fourth 
byte (dummy byte) to get DWORD aligned.
Format: B0:7  G0:7  R0:7  X0:7  B0:7  G0:7  R0:7  X0:7  B0:7...
Port A
Port B
Port C
Port D
Port E
Port F
Port G
Port H
Port I
Port J

Pixelrouter-Mode: 0x16
3 Taps, 8 Bit/Pixel ->

32 Bit/Pixel, farbe

GB R X XRB G

0x17 3 Taps, 8 Pixel/Bit,
Ports ABC
Base Camera Link®

3 Bytes / Pixel, 8 Bit / color, 24 Bit color depth.
The data is arranged as 24 Bit/Pixel Bitmap. The colors are in the order 
BGR stored in memory.
Format: B0:7  G0:7  R0:7  B0:7  G0:7  R0:7  B0:7...

Port A
Port B
Port C
Port D
Port E
Port F
Port G
Port H
Port I
Port J

Pixelrouter-Mode: 0x17
3 Taps, 8 Bit/Pixel ->

24 Bit/Pixel, farbe

GB R RB G B G

0x18 1 Taps, 8 Pixel/Bit,
Port A
Base Camera Link®

1 Byte / Pixel, 8 Bit / Pixel.
Order: 0:7  0:7  0:7  0:7  0:7...
Port A
Port B
Port C
Port D
Port E
Port F
Port G
Port H
Port I
Port J

Pixelrouter-Mode: 0x18
1 Tap, 8 Bit/Pixel ->

8 Bit/Pixel, monochrom

0x19 4 Taps, 8 Pixel/Bit,
Ports ABCD
 Medium Camera Link®

1 Byte / Pixel, 8 Bit / Pixel.
Order: 0:7  0:7  0:7  0:7  0:8...
Port A
Port B
Port C
Port D
Port E
Port F
Port G
Port H
Port I
Port J

Pixelrouter-Mode: 0x19
4Taps, 8 Bit/Pixel ->

8 Bit/Pixel, monochrom

 

4



General Level 1 -Software Manual

1A 3 Taps, 12 Pixel/Bit,
Ports ABCDE
 Medium Camera Link®

6 Byte / Pixel, 12 Bit / color, 36 color depth. 
The data is arranged as color image, 16/Bit/color and 48 Bit/Pixel. The 
colors are in the order BGR stored in memory.
 Format:  B0:7  B8:11  G0:7  G8:11  R0:7  R8:11  B0:7  B8:11...
Port A
Port B
Port C
Port D
Port E
Port F
Port G
Port H
Port I
Port J

Pixelrouter-Mode: 0x1A
3 Taps, 12 Bit/Pixel ->

48 Bit/Pixel, farbe

GB R GB R

0x1F Frame Grabber internal 
test pattern generator.

1 Byte / Pixel, 8 Bit / Pixel,
Format: 0:7  0:7  0:7  0:7  0:7  0:7  ...

Pixelrouter-Mode: 0x1F
8 Bit/Pixel, Graukeil

Testbild im On Board Speicher

 

4



General Level 1 -Software Manual

Nomenclature used for describing the order of image data in the On Board Memory:

X:Y Number and position of used pixels in a byte
Example: 0:7 -> All 8 bits of the byte are used. 0:3 -> bits 0 to 3 are used

A letter can prefix the pixel definition:

B The blue part of a color image
G The green part of a color image
R The red part of a color image
X By the pixel router inserted dummy value

Pixel with more than 8 bits per pixel are stored in memory in intel format (Little Endian)

Example:

0:7  0:7  0:7 Monochrome picture,  8 Bit/Pixel.
B0:7  G0:7  R0:7 Picture using t 8 Bit/color und 24 Bit color depth. 

Alignment in memory: blue-green-red
B0:7  B8:11  G0:7  G8:11  R0:7  R8:11  B0:7  B8:11... Picture using 12 Bit/color and 36 Bit color depth.

We need 2 Bytes/color, so we need 6 Byte/pixel in 
memory.
The alignment of the colors in memory: BGR

G Before changing the configuration of the Camera 
Link® interface, stop sampling frames!

If your camera has a configurable interface (as e.g. the Mikrotron MC 13xx cameras) don’t forget to set 
your camera to the same configuration as you choose for the frame grabber. 

Line scan cameras

The Inspecta-5 can be driven in a ‘full frame camera mode’ or in ‘line scan camera mode’.
To connect line scan cameras to the Frame Grabber, we have to switch to line scan mode. Setting the 
parameter MVFGPAR_LS_CAMERA to MVFGVAL_YES does this.

The definition of the number of camera lines to record can be done in two ways:

• Setting the parameters MVFGVAL_G_NUMLIN and MVFGVAL_C_NUMLIN to the number of lines we 
want to capture. Now the Frame Grabber treats the line scan camera like a full frame camera. 
That is, after sampling the number of defined lines, the Frame Grabbers notifies the user of 
getting a new frame.

• Setting the parameter MVFGVAL_C_NUMLIN to 0, causes the Frame Grabber to capture lines from 
the camera as long as the signal MVFGPAR_LS_FRM_START is active. If the signal gets inactive, 
recording stops and the user is notified. The number of lines captured can be calculated using the 
value MVFGPAR_G_DMA_PTR (see mvfg_getparam).

 

4



General Level 1 -Software Manual

pcParamName PcParamValue
MVFDGPAR_LS_CAMERA Selects the ‘Line Scan Camera Mode’:

Parameter Meaning
MVFGVAL_YES The connected camera is a line scan camera. Switches the 

Frame Grabber to Line Scan Mode.

MVFGVAL_NO The connected camera is not a line scan camera. Switches 
the Frame Grabber to Full Frame Mode.

MVFGPAR_LS_FRM_START Defines the source for the ‘Frame-Start-Signal’ for capturing line scan 
camera lines:
Parameter Meaning
MVFGVAL_CC_NOP Signal disabled
MVFGVAL_SW_TRIGGER Software trigger
MVFGVAL_PPIN0
MVFGVAL_PPIN1
MVFGVAL_PPIN2
MVFGVAL_PPIN3

Recording is controlled by a signal on port 0,1,2 or 3.

MVFGVAL_TIMER_A
MVFGVAL_TIMER_B

Recording is controlled by the output of Timer A or B.

MVFGPAR_LS_FRM_START_POL Defines the polarity of the ‘Frame-Start-Signal’:
Parameter Meaning
MVFGVAL_POS Positive polarity
MVFGVAL_NEG Negative polarity

MVFGPAR_C_NUMLIN Number of lines to capture from line scan camera.

 

4



General Level 1 -Software Manual

3.5.3 mvfg_getparam

Synopsis:
LONG WINAPI mvfg_getparam( char * pcParamName,

void * pValueBuffer,
LONG DeviceNumber )

Description:
The function returns the current or value of the Inspecta-5 parameters listed below.

 The meaning of the parameters is the same as on function ‘mvfg_setparam()’ respectively is 
described below.

Sample:
See sample Setting and reading parameters

Parameters:
char * pcParamName

Name of the parameter to be read.
(Constants to use for pcParamName are listed in the table at the next page.)

void * pValueBuffer
Address of a buffer to which the value of the parameter is written.
The buffer must be from the same type as the parameter, so that the returned value fits into it. 
(You can find the specific types at the table at the next page.)

LONG DeviceNumber
Grabber-number 

Return value (LONG):
MVFG_OK

The parameter was read
EMVFG_NO_VXD

Error: grabber isn't installed
EMVFG_CAMPARAM_UNKNOWN

Error: parameter is unknown
EMVFG_NOT_OPEN

Error: driver hasn't been opened with mvfg_open or it was closed
 

 The buffer pValueBuffer must be the right type. 
Within the table for the parameters you will find the 
types at the left side (vertical).

 

4



General Level 1 -Software Manual

Type pcParamName Description
LO

N
G MVFGPAR_REQFRAME Returns the number of requested frames in main memory.

MVFGPAR_G_REQFRAME Returns the number of requested frames in On Board memory.
MVFGPAR_TIMEOUT Timeout in ms

D
W

O
R

D

MVFGPAR_LINELEN Length of a image-line for record in bytes

MVFGPAR_NUMLIN Number of image-lines for record

MVFGPAR_EXT_MODE_FLAG Returns the current state of the ‘Extended Mode Flag’.
Flag = 0: Compatibility mode on
Flag = 1: Extended mode on

MVFGPAR_READ_ADDR Source address (offset) in frame grabber memory to read image data 
from.

MVFGPAR_WRITE_ADDR Data read from grabber memory will be written to this offset in the 
target buffer in main memory.

MVFGPAR_MEM_SIZE Size of the image buffer in main memory of the computer in bytes.
MVFGPAR_G_READ_ADDR Reserved
MVFGPAR_G_WRITE_ADDR Offset in the on board memory of the frame grabber, image data from 

the camera will be written to.
MVFGPAR_G_MEM_SIZE Size of the on board memory of the frame grabber in bytes.
MVFGPAR_G_LINELEN Line length of a frame from the connected camera in bytes.
MVFGPAR_G_NUMLIN Number of lines of a frame from the connected camera.
MVFGPAR_G_TRAILER Trailer count.

Number of frames read from the connected camera after stop signal.
The trailer count is always > 0.

MVFGPAR_G_CONT_FLAG Returns the current state of the ‘Continuous Flag’ (cf. function 
mvfg_setparam()).

MVFGPAR_G_WRAP_FLAG Ring buffer flag.
Flag = 0: ring buffer was not wrapped around.
Flag = 1: ring buffer was wrapped around

MVFGPAR_C_NUMLIN Number of line scan camera lines to read.
MVFGPAR_INPUT_PORT Reads the current state of the digital input ports of the frame grabber.

Returned value Bit 0 = Port0
Returned value Bit 1 = Port1
Returned value Bit 2 = Port2
Returned value Bit 3 = Port3

MVFGPAR_OUTPUT_PORT Reads the current state of the digital output ports of the frame grabber.
Returned value Bit 0 = Port0
Returned value Bit 1 = Port1
Returned value Bit 2 = Port2
Returned value Bit 3 = Port3

 

4



General Level 1 -Software Manual

FO
R

M
A

T_
IN

FO

MVFGPAR_DATAFORMAT Structure with information about the format of the image in the frame 
grabber memory (current only 8 Bit Black&White format is 
supported):

iNumberOfPlanes Number of planes which are read by the grabber.
iChannelsPerPlane Number of channels per plane. (Represents e.g. the 

color-channels at RGB 8:8:8   =   3 channels).
iBitsPerChannel [ ] Array with the number of bits of each channel.

(e.g. at RGB 5:6:5   =   { 5, 6, 5 },
        at 8 bit B&W   = { 8 } )

iOffsetNIOC Offset to the next pixel in one channel in bytes.
(e.g. at RGB 5:6:5 (16 bit)     =   2
        at RGB 8:8:8 (24 bit)     =   3
        at B&W 8 bit                 =   1
        at B&W 10 bit               =   2 )

lImageWidth Width of an camera image in pixel.
lImageHeight Height of an image in pixel.
lLineSize Length of one line in bytes (dependes on the width 

and the format of an image).
(e.g. Width = 640 Pixel, Format = RGB 8:8:8
        lLineSize = 640 * 3 = 1920 bytes)

lPlaneSize The size of one planes in bytes.
lFrameSize The size of one frame (all planes) in bytes.
lColorFormat MVFG_RGB = color,  MVFG_GRAY = gray-scale

 

4

Type pcParamName Description



General Level 1 -Software Manual

3.5.4  mvfg_getbufptr

Synopsis:
void * WINAPI mvfg_getbufptr( LONG DeviceNumber )

Description:
Returns a pointer to the start of the image buffer in main memory of the computer. Frames read 
from the on board memory of the frame grabber are written to this buffer. If frames are read with an 
offset (cf. parameter MVFGPAR_WRITE_ADDR) you have to add the offset to this address to get a 
pointer to the image.

Sample:
See sample Getting an image and its measurements

Parameters:
LONG DeviceNumber

Grabber-number (0 to 3)

Return value (void *):
Pointer

To the beginning of the image-buffer of the Inspecta
NULL

Error

 The function mvfg_errmessage cannot be used for 
this function, because the return value is a pointer to 

a buffer not an error code.

 

4



General Level 1 -Software Manual

3.5.5 mvfg_grab

Synopsis:
LONG WINAPI mvfg_grab( DWORD iCommand,

LONG DeviceNumber )
Description:

This function controls the frame acquisition from the camera to the on board memory of the frame 
grabber and the transfer from it to the main memory of the computer in Extended Mode. This is done 
by a number of commands; send to the driver respectively the frame grabber, by this function.

To switch to Extended Mode, set flag ‘MVFGPAR_EXT_FLAG’ to “1”.

 You have to wait until commands in extended mode 
have finished, before you can switch to non-extended 

mode and vice versa.

New to Inspecta-5 is the ‘On Board Memory’. Frames read from a camera are not stored in the main 
memory of the computer but in a memory available one the frame grabber itself. The user has no 
access to this memory. To work with the image data, he has to copy the frames from the on board 
memory to a buffer in main memory.

So, it requires two steps to get an image from a camera to the main memory of your computer:

1. Requests the frame grabber to store images from the camera into his on board memory.
2. Copy the stored frames from grabber memory to the main memory of your computer.

We added some new commands to the function ‘mvfg_grab()’, to support this ‘two phases of image 
acquisition’. This commands gives you new possibilities and an extra flexibility in grabbing images. 
E.g. the number and size of the frames requested to capture from camera can differ in number and 
size of the data copied to main memory. Another example would be to copy image data from one 
region of the On Board Memory of the Frame Grabber to main memory, while grabbing new frames 
from a camera to another region in the Grabber Memory. This can be also done simultaneously 
because of two independent hardware components for these functions.

 You may not read data from the same memory where 
the Frame Grabber is writing data from the camera, 
because this would give you undefined image data.

 

4



General Level 1 -Software Manual

Sample:
See sample Getting an image and its measurements

Parameters:
DWORD iCommand

Behaviour (Constants for iCommand are listed at the table at the next page).
LONG DeviceNumber

Grabber-number 

Return value (LONG):
Depends on the value of iCommand.

iCommand Description
GRAB_WAIT

D
es

cr
ip

tio
n Copy one or more frames from the on board memory of the frame grabber to main 

memory and returns to caller. 

R
et

ur
ns

MVFG_GRAB_READY Grab succeed
EMVFG_TIMEOUT Error: image couldn't be grabbed within timeout

EMVFG_NO_VXD Error: Inspecta isn't installed
EMVFG_NOT_OPEN Error: driver hasn't been opened by mvfg_open or it 

was closed
GRAB_NOWAIT

D
es

cr
ip

tio
n Starts the copy of one or more frames from on board memory of the frame 

grabber and returns at once to the caller.

R
et

ur
ns MVFG_OK Grab started

EMVFG_NO_VXD Error: Inspecta isn't installed
EMVFG_NOT_OPEN Error: driver hasn't been opened by mvfg_open or it 

was closed
GET_STATUS

D
es

cr
ip

tio
n Get status for image transfer from frame grabber to main memory.

R
et

ur
ns

MVFG_GRAB_READY Grab succeed
MVFG_NOT_READY Grab started but not complete yet
EMVFG_TIMEOUT Error: image couldn't be grabbed within timeout

EMVFG_NO_VXD Error: Inspecta isn't installed
EMVFG_NOT_OPEN Error: driver hasn't been opened by mvfg_open or it 

was closed

 

4



General Level 1 -Software Manual

iCommand Description
GET_STATUS_WAIT

D
es

cr
ip

tio
n Waits until a previously started copy request for images from the grabber memory 

to the main memory are finished.

R
et

ur
ns

MVFG_GRAB_READY Grab succeed
EMVFG_TIMEOUT Error: image couldn't be grabbed within timeout
EMVFG_NO_VXD Error: Inspecta isn't installed
EMVFG_NOT_OPEN Error: driver hasn't been opened by mvfg_open or it 

was closed
GRAB_G_WAIT

D
es

cr
ip

tio
n Starts image requisition from the camera and waits until all frames are stored in 

the ‘on board memory’ of the frame grabber. Then it returns to caller.

R
et

ur
ns

MVFG_GRAB_READY Grab succeed

EMVFG_TIMEOUT Error: image couldn't be grabbed within timeout

EMVFG_NO_VXD Error: Inspecta isn't installed
GRAB_G_NOWAIT

D
es

cr
ip

tio
n Starts image requisition from the camera and stores data in the ‘on board memory’ 

of the frame grabber. If the continuous mode is set, frames will be captured 
frequently until user stops recording.
The function returns back to caller, as soon as recording is started 

R
et

ur
ns Same as function ‘GRAB_NOWAIT’

GRAB_G_STOP

D
es

cr
ip

tio
n

Stops a currently running continuous record loop.
If you have set the Continuous Flag ‘MVFGPAR_G_CONT_FLAG’ before sending 
the command ‘GRAB_G_NOWAIT’ to the frame grabber, it will continuously 
grab images to it’s ‘on board memory’. To stop the recording loop, you have to 
send this command to the frame grabber.
If there are defined a number of ‘Trailer Frames’ (cf. parameter 
MVFGPAR_G_TRAILER), recording stops not before grabbing this frames.
After the stop signal was send, you have to wait for the end of recording, using 
one of the status functions below.

R
et

ur
ns

MVFG_OK Grab started
EMVFG_NO_VXD Error: Inspecta isn't installed

EMVFG_NOT_OPEN Error: driver hasn't been opened by mvfg_open or it 
was closed

 

5



General Level 1 -Software Manual

iCommand Description
GET_G_STATUS

D
es

cr
ip

tio
n Get status information if a ‘non waiting’ capture request is still running.

If recording runs in ‘Continuous Mode’, this command returns valid information 
only if recording was stopped by command ‘GRAB_G_STOP’. 
This function not waits until recording is finished but returns at once.

R
et

ur
ns

MVFG_GRAB_READY Grab succeed

MVFG_NOT_READY Grab started but not complete until now
EMVFG_TIMEOUT Error: image couldn't be grabbed within timeout
EMVFG_NO_VXD Error: Inspecta isn't installed

GET_G_STATUS_WAIT

D
es

cr
ip

tio
n Wait for a previously started recording to frame grabber memory gets finished.

If recording runs in ‘Continuous Mode’, this command returns valid information 
only if recording was stopped by command ‘GRAB_G_STOP’. 

R
et

ur
ns

MVFG_GRAB_READY Grab succeed
MVFG_NOT_READY Grab started but not complete yet
EMVFG_TIMEOUT Error: image couldn't be grabbed within timeout

EMVFG_NO_VXD Error: Inspecta isn't installed

EMVFG_NOT_OPEN Error: driver hasn't been opened by mvfg_open or it 
was closed

 

5



General Level 1 -Software Manual

3.5.6 mvfg_close

Synopsis:
LONG WINAPI mvfg_close( LONG DeviceNumber )

Description:
This function stops and deactivates the driver.

Sample
See sample Opening and closing the driver

Parameters:
LONG DeviceNumber

grabber-number 

Return value (LONG)
MVFG_OK

Driver deactivated
EMVFG_NO_VXD

Error: grabber isn't installed

 

5



General Level 1 -Software Manual

3.5.7 mvfg_errmessage

Synopsis:
LONG WINAPI mvfg_errmessage( LONG iCode )

Description:
This function handles a return-value on another MVFG-function (which can return error-codes) and 
shows a Windows-message-box with the error. If iCode was MVFG_OK, nothing happens.
iCode is returned unchanged.

Sample:
See sample Opening and closing the driver

Parameters:
LONG iCode

Return-value of an MVFG-function (error- or function-code). 
iCode cannot be obtained from mvfg_getbufptr because mvfg_getbufptr returns no error-codes but a pointer.
All other level1-functions return a function- or error-code.

Return value (LONG):
The parameter iCode is returned unchanged.

 

5



General Level 1 -Software Manual

4 Camera Profile
4.1 Overview

One of the arguments of function ‘mvfg_open’ (see chapter 3.2.1 and 3.3.1) is the name of a camera 
profile.

Camera profiles are a list of parameters and its values, written to an ASCII file. To host more then one 
camera profile in a file, each profile is headed by a profile name.

The parameters of a camera profile are read by function ‘mvfg_open’ and used to initialize the Frame 
Grabber and a connected camera. So, a camera profile consists of Frame Grabber and camera specific 
values. If a parameter is not defined, a default value is used by function ‘mvfg_open’.

Function ‘mvfg_setparam’ (mvfg_setparam) uses a subset of these parameters to configure the Frame 
Grabber at runtime.

A parameter name used in a camera profile and the same parameter name used in API function differ in 
its diction. The same is true for the values that are assigned to the parameters; in a camera profile no 
symbolic names allowed for the values.

Example: Giving the parameter ‘MVFGPAR_EX_GRAB_START’ a value, using function ‘mvfg_grab’:

Mvfg_setparam( MVFGPAR_EX_GRAB_START, MVFGVAL_PPIN0, 0 );

Defining the same parameter in a camera profile would look like this:

ExGrabStart=1

The table below lists all parameters that can be used in a camera profile. It also shows the diction of the 
names used in API functions and theirs equivalent used in a camera profile. The table after this shows 
symbolic parameter names used by API functions and theirs equivalent used in camera profiles.

 

5



General Level 1 -Software Manual

Comparison of the different diction of the parameter names used by API functions and used in a camera 
profile:

Name of a parameter using function 
mvfg_setparam

Namer of a parameter in a camera 
profile

MVFGPAR_LINELEN LineLen
MVFGPAR_NUMLIN NumLin
MVFGPAR_REQFRAME ReqFrame
MVFGPAR_TIMEOUT Timeout
MVFGPAR_READ_ADDR ReadAddr
MVFGPAR_WRITE_ADDR WriteAddr
MVFGPAR_G_READ_ADDR GreadAddr
MVFGPAR_G_WRITE_ADDR GwriteAddr
MVFGPAR_READ_ADDR ReadAddr
MVFGPAR_G_LINELEN GLineLen
MVFGPAR_G_NUMLIN GNumLin
MVFGPAR_ G_TRAILER GTrailer
MVFGPAR_G_REQFRAME GReqFrame
MVFGPAR_G_CONT_FLAG GContinuousFlag
MVFGPAR_C_LINELEN CLineLen
MVFGPAR_C_NUMLIN CNumlin
MVFGPAR_C_SKIP_LEFT CSkipLeft
MVFGPAR_C_SKIP_TOP CSKIPTop
MVFGPAR_LS_CAMERA LSCamera
MVFGPAR_LS_FRM_START LSFrmStart
MVFGPAR_LS_FRM_START_POL LSFrmStartPol
MVFGPAR_TIMER_A_START TimerAStart
MVFGPAR_TIMER_B_START TimerBStart
MVFGPAR_TIMER_D_START TimerCStart
MVFGPAR_TIMER_D_START TimerDStart
MVFGPAR_TIMER_ACD_CLOCK TimerACDClock
MVFGPAR_TIMER_A_COUNT TimerACount
MVFGPAR_TIMER_B_COUNT TimerBCount
MVFGPAR_TIMER_CD_COUNT TimerCDCount
MVFGPAR_CC1_SOURCE CC1Source
MVFGPAR_CC2_SOURCE CC2Source
MVFGPAR_CC3_SOURCE CC3Source
MVFGPAR_CC4_SOURCE CC4Source
MVFGPAR_CC1_POLARITY CC1Polarity
MVFGPAR_CC2_POLARITY CC2Polarity
MVFGPAR_CC3_POLARITY CC3Polarity
MVFGPAR_CC4_POLARITY CC4Polarity
MVFGPAR_PRESCALER_ACD PrescalerACD
MVFGPAR_TRIGGER_SYNC_A TriggerSyncA
MVFGPAR_TRIGGER_SYNC_B TriggerSyncB
MVFGPAR_LVAL_EDGE_A LvalEdgeA
MVFGPAR_LVAL_EDGE_B LvalEdgeB
MVFGPAR_QUADDEC_DIV QuaddecDiv
MVFGPAR_PPIN_INVERSION PpinInversion
MVFGPAR_OUTPUT_PORT OutputPort
MVFGPAR_EX_GRAB_START ExGrabStart
MVFGPAR_EX_GRAB_STOP ExGrabStop
MVFGPAR_EX_GRAB_START_POL ExGrabStartPol
MVFGPAR_EX_GRAB_STOP_POL ExGrabStopPol
MVFGPAR_PIXEL_ROUTER PixelRouter
MVFGPAR_PIXEL_ROUTER_ZONES PixelRouterZones
MVFGPAR_FRAME_CNTR FrameCntr

 

5



General Level 1 -Software Manual

Parameters which can only be used in a camera profile:
 

Parameter Description
CamString Name and path of a binary file, which content are send via the serial 

interface of the Frame Grabber to the connected camera.
Normally the file consists of camera and manufacturer specific values, 
which are used to initialize the camera.

FpgaFile Name and path of a FPGA file, which content is a specific firmware, used 
to program the Frame Grabber. As the functionality of the Frame Grabber 
is defined by its firmware, it is possible to adapt it to special requirements.
If there is no FPGA file defined in a profile, a default file is used to 
initialize the Frame Grabber.

 Programming the firmware can only be done by 
the Mikrotron GmbH. 

Comparison of symbolic values used for API functions and theirs equivalent used in camera profiles:

Parameterwert symbolisch Parameterwert in Kameraprofil
MVFGVAL_SW_TRIGGER 0
MVFGVAL_PPIN0 1
MVFGVAL_PPIN1 2
MVFGVAL_PPIN2 3
MVFGVAL_PPIN3 4
MVFGVAL_QUADDEC 5
MVFGVAL_TIMER_A 6
MVFGVAL_TIMER_B 7
MVFGVAL_TIMER_C 8
MVFGVAL_TIMER_D 9
MVFGVAL_NOP 10
MVFGVAL_PRESCALER_OUT 0
MVFGVAL_LVAL 1
MVFGVAL_NO 0
MVFGVAL_YES 1
MVFGVAL_FALLING 0
MVFGVAL_RISING 1
MVFGVAL_POS 0
MVFGVAL_NEG 1
MVFGVAL_LOW 0

 

5



General Level 1 -Software Manual

Parameterwert symbolisch Parameterwert in Kameraprofil
MVFGVAL_HIGH 1
MVFGVAL_TIMER_A_RISING 0
MVFGVAL_TIMER_B_RISING 1
MVFGVAL_TIMER_A_FALLING 0
MVFGVAL_TIMER_B_FALLING 1

 The numeric parameter values and theirs symbolic 
equivalents can be also found in header file 

‘MVFGDRV.H’.

4.2 Sample of a camera profile
# Profile name
[MC1311 640x480 1071fps ReqFrm -1 400 Trailer]

# Parameters for Frame Grabber configuration
CamMode=0x5000
LineLen=640
NumLin=480
ReqFrame=0
Timeout=2000

ReadAddr=0
GWriteAddr=0
GLineLen=640
GNumLin=480
GTrailer=400
GReqFrame=-1
GContinuousFlag=0

# File with data for camera configuration 
CamString=.\MC131_640x480_1071.mcf  

 

5



General Level 1 -Software Manual

5 Samples
If you want to build an application, using the Level-1 API, you have to bind your program with the 
import library MVFGI5.LIB. The library resolves references to the Dynamic Link Library 
MVFGI5.DLL of the Inspecta-5. 
 
Function prototyping, parameter names, constants etc. for the programming language ‘Microsoft C’ 
can be found in the file MVFGDRF.H.

All files you will need to build an application are installed by the Inpsecta-5 setup. Libraries are stored 
in the subdirectory LIB, include files in the subdirectory INCLUDE of your installation directory.

You can find the sample program ‘L1DEMO’, which shows you some of the new possibilities of the 
Inspecta-5 frame grabber, in the installation directory of the Inspecta-5 software.

 

5



General Level 1 -Software Manual

5.1 Opening and closing the driver

/*  This example opens the driver and sets the 
 *  parameters for the Testmode. The TestMode is
 *  defined in the section "TestMode” in the file
 *  "DEMO1.CAM”. If the camera-profile-file could
 *  not be found you have to put the complete path
 *  to the file in mvfg_open-parameter.
 */

#include "windows.h"
#include "mvfgdrv.h"      //  for the mvfgd32.dll

//  Windows main-function
int APIENTRY WinMain ( HINSTANCE hInstance,
                       HINSTANCE hPrevInstance,
                       LPSTR     lpCmdLine,
                       int       nCmdShow )
{
    LONG iRc;      //  return-value of this function

    //  Opens the driver, loads and sets the profile.
    //  You can also use another profile than
    //  "TestMode” to use your camera.
    iRc  =  mvfg_open( "Demo1.cam;Testmode", 0 );

    //  If mvfg_open returned another value than
    //  MVFG_OK a message is shown.
    mvfg_errmessage( iRc );

    if ( iRc == MVFG_OK )
    {
        //  Puts a message to the screen that the
        //  driver has been opened.
        MessageBox( NULL,   "Driver opened.”,
                    "MVFG”, MB_OK );
    }

    //  Now we set the set the API to extended mode 
    //  to use the new features of the Inspecta-5
    mvfg_errmessage(
      mvfg_setparam( MVFGPAR_EXT_MODE_FLAG, “1”, 0 ));      

    //  If the driver has been opened, it must be
    //  closed by mvfg_close at the end of the program
    iRc  =  mvfg_close( 0 );
    mvfg_errmessage( iRc );

    if ( iRc == MVFG_OK )
    {
        //  Puts a message to the screen.
        MessageBox( NULL,   "Driver closed.”,
                    "MVFG”, MB_OK );
    }

    //  If an error occurred during mvfg_close, the
    //  error-code is returned.

 

5



General Level 1 -Software Manual

    //  If the driver was not open, nothing happens.
    return iRc;
}
}

 

6



General Level 1 -Software Manual

5.2 Setting and reading parameters

/*  This example sets a new line length of the
    defined image.
 */

#include "windows.h" 
#include "mvfgdrv.h"      //  for the mvfgd32.dll

//  Windows main-function
int APIENTRY WinMain( HINSTANCE  hInstance,
                      HINSTANCE  hPrevInstance,
                      LPSTR      lpCmdLine,
                      int        nCmdShow )
{
    char acBuffer[256]; //  buffer for the messages
    DWORD dwValue;      //  buffer for the white-level

    //  Open the driver, load and set the profile.
    //  You can use another profile than “TestMode”
    mvfg_errmessage(
              mvfg_open("Demo1.cam;Testmode", 0)
                   );

    //  Read the actual line length of the image.
    //  The value is written to dwValue. 
    // The instance dwValue must have the
    //  right type. (here the type must be DWORD).
    mvfg_getparam( MVFGPAR_LINELEN, &dwValue, 0 );

    //  Windows-functions to shwo a message
    wsprintf(  acBuffer,
               “Linelen before setting: %d”,
                dwValue );
    MessageBox( NULL, acBuffer, “MVFG”, MB_OK );

    //  Now the line length is set to 480. 
    mvfg_errmessage(
          mvfg_setparam( MVFGPAR_LINELEN, “480”, 0 ));      

    //  Read the new line length and put a
    //  message to the screen again. 
    mvfg_getparam( MVFGPAR_LINELEN, &dwValue, 0 );

    //  Put a message to the screen.
    wsprintf( acBuffer,
              “Line length now: %d”,
              dwValue );
    MessageBox( NULL, acBuffer, “MVFG”, MB_OK );

    //  Close the driver.
    mvfg_close( 0 );

    return 0;
}

 

6



General Level 1 -Software Manual

5.3 Getting an image and its measurements

/*  This example shows how to get the dimensions of
 *  an image. For this the structure FORMAT_INFO is
 *  used. This structure is defined in the file
 *  MVFGDRV.H.
 *  You can use this functions in your own program.
 *  You must use mvfgd32.lib for the mvfgd32.dll.
 */

//  used the first grabber
#define    GRAB_ID    0

//  include the mvfg
#include  "mvfgdrv.h"

//  decleration of global variables
LONG lFrameWidth;
LONG lFrameHeight;
LONG lFrameSize;

//  function declerations
LONG InitMvfg( void );
void GetDimensions( void );
LONG GrabAndCopyImage( void* pBitMap );

/*  Call this function from your program to initialize
 *  he frame-grabber and the camera(s)
 */
LONG InitMvfg()
{
    int iRc;

    //  initialize the grabber and the camera
    iRc = mvfg_open("Demo1.cam;Testmode",GRAB_ID)

    if( iRc  !=  MVFG_OK )
        return mvfg_errmessage( iRc );
    else
        GetDimensions();

    return MVFG_OK;
}

/*  Call this function every time a camera-parameter
 *  changes.
 */
void GetDimensions( void )
{
    FORMAT_INFO sFormat;

    //  The buffer (second parameter) must be of the
    //  right type. Here the type must be FORMAT_INFO.
    mvfg_getparam( MVFGPAR_DATAFORMAT,

 

6



General Level 1 -Software Manual

                   &sFormat,
                   GRAB_ID );

    //  get the width of the image in pixel
    lFrameWidth    = sFormat.lImageWidth;

    //  get the hight of the image in pixel / lines
    //  (all planes)
    lFrameHeight   = sFormat.lImageHeight *
                     sFormat.iNumberOfPlanes;

    //  get the size of the image in byte (here all
    //  planes)
    lFrameSize     = sFormat.lFrameSize;
}

/*  This function copies a image into main memory.
 *  Be sure that the buffer pBitmap is large enough
 *  (at least lFrameSize bytes)
 *  If in non extended mode, the call of ‘mvfg_grab()’
 *  samples one frame from the camera and copy the
 *  image to main memory.
 *  If in extended mode, the function would copy a
 *  frame from the DRAM of the framegrabber to main
 *  memory.
 */
LONG GrabAndCopyImage( void* pBitmap )
{
    int iRc;

    iRc = mvfg_grab( GRAB_WAIT, GRAB_ID );

    memcpy( pBitmap,
            mvfg_getbufptr( GRAB_ID ),
            FrameSize );

    return mvfg_errmessage( iRc );
}

 

6



General Level 1 -Software Manual

/*  This function requests a sequence of 8 frames.
 *  The frames are stored in the on board memory
 *  of the framegrabber, starting at position 0.
 *  !!! Be sure the ‘Extended Mode’ flag is set !!!
 */
LONG GrabSequence( void* pBitmap )
{
    int iRc;

    mvfg_setparam( MVFGPAR_REQFRAME, “-9”, 0 ));      

    // You have to define the 8 frames by setting
    // the parameter to –9, because you want to use
    // a offset of 180 bytes to the start of the
    // image memory of the framegrabber (read
    // description of parameter MVFGPAR_G_REQFRAME
    mvfg_setparam( MVFGPAR_REQFRAME, “-9”, 0 ));      
   
    // Set the offset to write the frame to
    mvfg_setparam( MVFGPAR_G_WRITE_ADDR, “180”, 0 ));      

    // Get the sequence and wait until finished
    iRc = mvfg_grab( G_GRAB_WAIT, GRAB_ID );

    return mvfg_errmessage( iRc );
}

 

6



General Level 1 -Software Manual

/*  Copy the second frame from the above sampled
 *  sequence from framegrabber DRAM to computer
 *  memory.
 *  Return a pointer to the image.
 */
LONG GetFrameFromFramegrabber( void* pBitmap )
{
   DWORD dwXSize, dwYSize;

   // Get X and Y size of the frames in DRAM
   mvfg_getparam( MVFGPAR_G_LINELEN, &dwXSize, 0 ));      
   mvfg_getparam( MVFGPAR_G_NUMLIN, &dwYSize, 0 ));      

   // Set destination offset in main memory
   // the frame should be saved (200 bytes offset
   // from the start of the user buffer).
   mvfg_setparam( MVFGPAR_REQFRAME, “-2”, 0 ));      
   mvfg_setparam( MVFGPAR_WRITE_ADDR, “200”, 0 ));      

   // Set offset in DRAM we want to read from
   sprintf( acBuffer, “%u”, dwXSize * dwYSize );
   mvfg_setparam( MVFGPAR_READ_ADDR, acBuffer, 0 ));      

   // Start transfer to user ram
   iRc = mvfg_grab( GRAB_WAIT, GRAB_ID );

   // Calculate frame address in main memory
   pBitmap = mvfg_getbufptr( GRAB_ID ) + 200;
}

/*--------------------------------------------------*/

/*  The main-function could be WinMain or some thread
 *  or so.
 */
"MAINFUNCTION()"
{
    ...  //  more code

    void * pBitmap;

    //  open and initialize the grabber and the camera
    if( InitMvfg()  ==  MVFG_OK )
    {
        //  Allocate memory for the image-copy.
        //  You can also create a Windows-bitmap here
        //  to display the image.
        pBitmap = malloc( lFrameSize );
    }
    else
    {
        return –1;
    }

    ...  //  more code

    /*  Grab the picture and copy it to the allocated
     *  memory. For example you can create a Windows-
     *  bitmap to display the image. If you use this

 

6



General Level 1 -Software Manual

     *  in a loop you will get a livepicture.
     */
    GrabAndCopyImage( pBitmap );

    ...  //  more code

    mvfg_close( GRAB_ID );
}

5.4 Record control with trigger logic

//  We want the camera to take a photo every 58 ms,
//  with a shutter time of 17ms.
//  For this, we have to set periodically a puls on
//  Camera Control Line 1 (CC1) of the Camera Link®
//  Interface.
//  Timer B is used to trigger Timer A to generate
//  the puls every 58 ms.
//  Don’t forget to set the camera to ‘async puls
//  width’ mode before running the program.

Void StartPeriodicShutter()
{
   // Disable any signals on CC2 to CC4.
   mvfg_setparam( MVFGPAR_CC2_SOURCE, 
                  MVFGVAL_CC_NOP, 0 );      
   mvfg_setparam( MVFGPAR_CC3_SOURCE, 
                  MVFGVAL_CC_NOP, 0 );      
   mvfg_setparam( MVFGPAR_CC4_SOURCE, 
                  MVFGVAL_CC_NOP, 0 );      

    // Set timer A and B inactiv by selecting
    // ‘Software Trigger’ mode.
    mvfg_setparam( MVFGPAR_TIMER_A_START, 
                  MVFGVAL_SOFTWARE_TRIGGER, 0 );      
   mvfg_setparam( MVFGPAR_TIMER_B_START, 
                  MVFGVAL_SOFTWARE_TRIGGER, 0 );      

   // Connect output of Timer A to Camera Control 
   // Line CC1.
   mvfg_setparam( MVFGPAR_CC1_SOURCE, 
                  MVFGVAL_TIMER_A, 0 );      

   

 

6



General Level 1 -Software Manual

   // The camera needs a positiv puls on CC1.
   mvfg_setparam( MVFGPAR_CC1_POLARITY, 
                  MVFGVAL_POS, 0 );      

   // We use the output of the prescaler as
   // clock for Timer A. The clock of Timer
   // B is fix connected to the systemclock
   // of the Frame Grabber (7,3728 MHz).
   mvfg_setparam( MVFGPAR_TIMER_ACD_CLOCK, 
                  MVFGVAL_PRESCALER_OUT, 0 );    

   // There is no need to divide the clock of
   // the prescaler.
   mvfg_setparam( MVFGPAR_PRESCALER_ACD, “1”, 0 );      

   // We need a duratin of 58 ms for the output
   // puls of Timer B. So, we have to load
   // the counter of the timer by a value of
   // 58ms * 7,3278MHz = 427622.
   mvfg_setparam( MVFGPAR_TIMER_B_COUNT, 
                  “427622”, 0 );      

   // We want a puls of 17ms at the output
   // of Timer A. So, we have to load
   // the counter of the timer by a value of
   // 17ms * 7,3278MHz/1 = 125338.
   mvfg_setparam( MVFGPAR_TIMER_A_COUNT, 
                  “125338”, 0 );
      
   // Timer B is started by its own end.
   // Changing the operation mode of timer B,
   // loads and starts the timer.
   mvfg_setparam( MVFGPAR_TIMER_B_START, 
                  MVFGVAL_TIMER_B_END, 0 );      

   // Timer A is started by the end of Timer B.
   mvfg_setparam( MVFGPAR_TIMER_A_START, 
                  MVFGVAL_TIMER_B_END, 0 );      
 
   // Now we get every 58ms a puls of 17ms
   // on Camer Link Line CC1.
}

 

6



General Level 1 -Software Manual

5.5 Record stop by an external signal

//  Sample how to stop recording by 
//  an external signal on digital input
//  port 0 of the frame grabber.
//  (Driver has to be set to extended mode).
Void RecExternalStop()
{
   // Enable to stop recording by an external signal
   // on input port 0.
   mvfg_setparam( MVFGPAR_EX_GRAB_STOP, 
                  MVFGVAL_PPIN0, 0 );      
   // Stop on positive pulse.
   mvfg_setparam( MVFGPAR_EX_GRAB_STOP_POL, 
                  MVFGVAL_POS, 0 ); 

   // No inversion of the input signals on
   // the digital input ports.
   mvfg_setparam( MVFGPAR_PPIN_INVERSION, 
                  MVFGVAL_NO, 0 );

   // Set timeout to INFINITY
   mvfg_setparam( MVFGPAR_TIMEOUT,
                  MVFGVAL_INFINITY_TIMEOUT );

   // Use all on board memory of the frame grabber
   // as ring buffer.
   mvfg_setparam( MVFGPAR_G_REQFRAME, “-1” );
   // Set record mode to continuous
   // (‘infinity record loop’).
   mvfg_setparam(MVFGPAR_G_CONT_FLAG, “1” ); 

   // Start record loop and wait for external
   // trigger signal on input port 0 to stop.
   mvfg_grab( MVFG_NOWAIT, 0 ); 
}     

 

6



General Level 1 -Software Manual

6 Program L1DEMO

L1DEMO is a simple program, which 
shows you some of the fundamental 
procedures to work with the Inspecta-5 
frame grabber.
You can start the program from the 
Windows Start menu. The Source is 
stored in the installation directory of the 
frame grabber driver (directory 
‘<installdir>\Inspecta-5\L1Demo’). 
There is a pre compiled Version of the 
program in the directory 
‘<installdir>\Inspecta-5’. 

The program is written in ‘C’ and uses the Windows Win32 API. It is compiled with the Microsoft 
Visual Studio 6.0.

6.1 Program options

The list below, gives you a short description of the functions you can start from the program menu:

Function Description
File->Exit Exits the program
Camera->Stop Stops the current record mode
Camera->Live Picture Shows a live picture from the camera
Camera->
Single frame shoot

Every time you select this function from the menu, the frame grabber 
captures exactly one new frame from the camera and displays it.

Camera->Capture sequence Starts the control buttons for a simple video recorder. The recorder 
samples the number of frames as defined in the camera profile (see 
below) and displays it on the window.

Description of the buttons:
Record Set the frame grabber to record mode.

It starts to sampling images from the camera in rotating 
mode, unless you press the ‘Stop’ button. While 
recording, a live picture is shown on the window.

Stop Stops sampling images.
Play Displays the recorded sequence of images on the 

window. You can also use the Scrollbar of the dialog to 
select single frames.

Load Profile Shows a dialog from which you can select a new camera profile. 
Loading a camera profile configures the frame grabber AND the 
camera with new parameters. We defined some profiles in the file 
‘L1DEMO.CAM’ in the installation directory of the driver. Below are 
a list and a short description of the profiles in the cam-file.

 

6



General Level 1 -Software Manual

Function Description
Misc->Image type Shows a dialog to select selection the graphic mode for visualization.

Description of the dialog:
Display image as: Selected visualization mode:

• b&w, 8 bit/pixel
• RGB color, 24 bits/pixel
• RGB color, 32 bits/pixel
• RGB color 3x16 bits/pixel
• B&w, 1x10 bits/pixel
• Bayer filter

Bayer Filter On Activates/Deactivates the Bayer Filter. 
Quality Quality of the algorithm used to convert the raw image data from 

camera to a color image.
Fast: fast conversion, but lower image quality.
Good: slower conversion, but better image quality.

Select Bayer Filter 
Organization

Selects the layout of the color filters on top of the sensor. To select 
the right layout is important for the right color association.

Color correction 
values

Defines the color correction factor for Red, green and blue.

Press for auto white 
balance

Starts automatic white balance correction.
To get best results, follow this instructions:

1. Point camera to a white plane
2. Select ‘Live picture’ from menu
3. Adjust exposure to a not to light image
4. Press button for white balance

Please note: different light sources or different light 
accommodations require a new white balance correction.

 

7



General Level 1 -Software Manual

Function Description
Misc->Shutter Shows a dialog for configuration of the shutter logic and the external 

start/stop signals.
Description of the dialog:
CC x Source For each of the camera control lines 

CC1...CC4 you can define a signal of the 
frame grabber, which is connected to it.

CC x Polarity Defines if the signal for line CCx will be 
inverted. 

QuadDecDivider Divider for the output signal of the 
quadrature decoder of the frame grabber.

Timer A/C/D 
prescaler

Timer A/C/D has the same. Dividing it to the 
value of the ‘Prescaler’ can modify the 
frequency of the clock.

Timer A start
Timer B start
Timer C start
Timer D start

Defines the start signal of timer A, B, C, und 
D.
Please take attention to the note at the end 
of the table.

Timer A count
Timer B count
Timer C/D count

Value for the counter of timer A, B, C and 
D. The counter is decremented by the timer 
clock. If the counter reaches zero, the timer 
gets active.

Invert Input 
Port 0-3

Defines if the signals on the digital input 
port 0,1,2 will be inverted.

Record Start Defines the signal for external record start.
Record Stop Defines the signal for external record stop
Record Start Pol. Polarity of the record start signal.
Record Stop Pol. Polarity of the record stop signal.
Software trigger For test purposes you can produce a software 

generated trigger signal by pressing this 
button.

Assign All changes in the input mask will be just 
getting active after pressing this button.

Misc->Pixel Router In this dialog you can select the mode of the Inspecta-5 Pixel Router.
The Pixel Router defines the configuration of the Camera Link 
interface as well as the conversion of the camera data saved in the On 
Board Memory of the Frame Grabber.

Misc->Line Scan Camera settings This dialog configures the Frame Grabber for linescan camera mode.
Description of the dialog:
Use linescan camera: Activates/deactivates the lines can mode of the 

Frame Grabber.
Frame Valid Signal Source: Defines the source for the Frame Valid Signal if 

grabbing a variable number of camera lines.
Source Polarity Polarity of the Frame Valid Signal

Misc->Options Activates/deactivates the ‘in frame counter’ of the Inspecta-5.

 

7



General Level 1 -Software Manual

6.2 Pre defined camera profiles in file ‘L1DEMO.CAM’

The L1DEMO program uses a file named ‘L1DEMO.CAM’ to configure the frame grabber and, if 
necessary, the connected camera. The file is a database of a collection of pre defined camera profiles we 
tested with the Inspecta-5. If the camera you want to use is not listed in the file, you can use to modify 
an existing profile to fit to your camera. If you have any problems defining a profile for your camera, 
please contact our support at

support@mikrotron.de

For a description of the entries in the profile section, have a look at mvfg_setparam and Camera Profile, 
of this manual.

 

7

mailto:support@mikrotron.de

	1General
	1.1About Level1
	1.2Revision history
	1.3Trademarks

	2Installation
	2.1Setup-disk / CD
	2.2 Installation of Inspecta-5 for Windows 2000/XP
	2.2.1Setup the Inspecta-5 basic components
	2.2.2Installing the Inspecta-5 hardware
	2.2.3Installing the device driver
	2.2.4A first test
	2.2.5The Inspecta-5 frame buffers
	2.2.6Registry entries

	2.3Multiple Inspectas-5 in one PC

	3Functions
	3.1Overview
	3.2Inspecta-5 operation modes
	3.3Camera communication
	3.4Level-1 Compatibility Mode
	3.4.1mvfg_open
	3.4.2mvfg_setparam
	3.4.3mvfg_getparam
	3.4.4 mvfg_getbufptr
	3.4.5mvfg_grab
	3.4.6 mvfg_close
	3.4.7mvfg_errmessage

	3.5Level-1 Extended Mode
	3.5.1mvfg_open
	3.5.2mvfg_setparam
	3.5.3mvfg_getparam
	3.5.4 mvfg_getbufptr
	3.5.5mvfg_grab
	3.5.6mvfg_close
	3.5.7mvfg_errmessage


	4Camera Profile
	4.1Overview
	4.2Sample of a camera profile

	5Samples
	5.1Opening and closing the driver
	5.2Setting and reading parameters
	5.3Getting an image and its measurements
	5.4Record control with trigger logic
	5.5Record stop by an external signal

	6Program L1DEMO
	6.1Program options
	6.2Pre defined camera profiles in file ‘L1DEMO.CAM’


